

Títol: Small Worlds of Economic Networks

Volum: 1/1

Alumne: Jordi Colomer Matutano

Director/Ponent: Ramon Sangüesa i Solé

Departament: LSI

Data: July 19th 2007

DADES DEL PROJECTE

Títol del Projecte: Small Worlds of Economic Networks

Nom de l'estudiant: Jordi Colomer Matutano

Titulació: Enginyeria Informàtica

Crèdits: 37.5

Director/Ponent: Ramon Sangüesa i Solé

Departament: LSI

MEMBRES DEL TRIBUNAL (nom i signatura)

President:

Vocal:

Secretari:

QUALIFICACIÓ

Qualificació numèrica:

Qualificació descriptiva:

Data:

Contents

1 Introduction 5
1.1 Objectives . 5

1.1.1 Data Gathering, Cleanup and Organization 5
Name matching . 6

1.1.2 Quantitative Analysis 6
1.1.3 Visualization . 6

2 Concepts 7
2.1 What is a social network? . 7
2.2 Graph theory . 8
2.3 Properties of social networks 9

2.3.1 Small World Networks 10
2.3.2 Scale-free networks . 10

3 Database structure, and data gathering 12
3.1 Introduction . 12
3.2 Database structure . 12
3.3 Data gathering . 14
3.4 Data Import . 14
3.5 Data cleaning . 15

3.5.1 Name matching . 16

4 Name Matching 17
4.1 Introduction and objectives 17

4.1.1 Levenshtein distance 18
4.2 Person Name matching algorithms 21

4.2.1 Name clean-up . 25
4.2.2 NFact factor of sums 25

Description . 25
Examples . 27
Analysis . 28

1

Running Time . 32
4.2.3 NFact sum of factors 34

Description . 34
Examples . 34
Analysis . 35
Running Time . 35

4.2.4 NM factor of sums . 40
Description . 40
Examples . 40
Analysis . 41
Running Time . 41

4.2.5 NM sum of factors . 45
Description . 45
Examples . 45
Analysis . 45
Running Time . 45

4.2.6 NM maximum minimum 49
Description . 49
Examples . 49
Analysis . 49
Running Time . 49

4.2.7 NM maximum minimum with contractions 53
Description . 53
Examples . 53
Analysis . 54
Running Time . 54

4.2.8 Shortcuts . 57
4.2.9 Shortcuts 1. Initials . 57

Description . 57
Analysis . 58
Running Time . 60

4.2.10 Shortcuts 2. Metric trees 61
Construction of the metric tree 61
Searching the tree . 63
Analysis . 64

4.2.11 Conclusions . 65
4.3 Firm Name matching algorithms 67

4.3.1 Name clean-up . 67
Substitutions . 68

4.3.2 Algorithms and Benchmarks 68
NM factor of sums weighted 70

2

Two ways version . 71
Keyword removal . 72

5 The Pipeline 75
5.1 Introduction . 75
5.2 The graph class . 75

5.2.1 Adjacency list . 75
5.2.2 Adjacency matrix . 76
5.2.3 Our implementation 77

5.3 Input and Oputput . 80
5.4 Basic Features . 81
5.5 Bipartite networks . 81
5.6 Community structure . 82

5.6.1 Girvan Newman . 82
5.6.2 Fast Algorithm . 82
5.6.3 PBD . 84
5.6.4 Extremal Optimization 84
5.6.5 Hill climbing . 85
5.6.6 Simulated annealing 85
5.6.7 Community structure in bipartite networks 87

5.7 Clustering coefficient . 89
5.7.1 Implementation . 90

5.8 Centrality Measures . 92
5.8.1 Degree Centrality . 92
5.8.2 Strength . 92
5.8.3 Eigenvector Centrality 92

Implementation . 93
5.8.4 Betweenness Centrality 93

5.9 Estimations . 94
5.9.1 Normal graphs . 94

Size of giant component 94
Average shortest path length 95

5.9.2 Bipartite graphs . 96
5.10 Correlation . 97
5.11 Distributions . 97
5.12 Rewiring . 97
5.13 Unit Test . 99

6 Visualization 1: Line Map 100
6.0.1 Implementation . 100

3

7 Visualization 2: Venture Capital 102
7.1 Introduction . 102
7.2 Visualization . 103

7.2.1 Implementation . 104
7.3 Secondary economic information 105

7.3.1 Implementation . 106
Video class . 107
VideoResize class . 108
VideoInterpolate class 108
VideoSum class . 108
VideoMerge class . 108
EnergyVideo class . 109
PerCapitaVideo class 110
ProcessingVideo class 111
PngsVideo/JpegsVideo class 111
Putting it all together 111

7.4 Secondary economic information, ver. 2 111
7.4.1 Implementation . 112

PerCapitaVideoShapeFile class 112
7.5 Conclusions . 114

7.5.1 Future Work . 114

8 Planning, Development and Costs 115
8.1 Definition of objectives . 115
8.2 Background and feasibility . 115
8.3 Development . 116
8.4 Concordance of objectives and results 117
8.5 Economic analysis and alternatives 117

4

Chapter 1

Introduction

1.1 Objectives

The Small Worlds of Economic Networks is a multi-disciplinary project co-
directed by Prof. Bruce Kogut from INSEAD Business School in Fontainebleau,
France and Prof. Fabrizio Ferraro at IESE Business School in Barcelona,
Spain. It includes close to 20 very heterogeneous groups from institutions
around the world. The objective of the project is to gather, clean up, or-
ganize and analyze data about ownership ties across firms in 43 countries
around the world, as well as information about interlocking boards of di-
rectors. More concretely, I worked under the direction of Prof. Kogut in
completing sub-projects in each one of the mentioned project objectives, as
follows:

1.1.1 Data Gathering, Cleanup and Organization

My involvement in this part of the project consisted in helping groups and
researchers to give specific formats to the country dataset they contributed to
the systems. These datasets were then imported into a dataset structure and
normalized to a specific schema. Once these two steps were completed we had
to devise methodologies to detect errors, rank them and help researchers cor-
rect them. Drawing from existing literature we developed several techniques
to accomplish this step.

Once the datasets passed the Quality check process, we transformed them
into a suitable format in order to analyze their network properties.

5

Name matching

Part of the clean-up process of the dataset is the name matching that we
want to apply in order to find duplicated names differently spelled in the
database. Moreover, we can use similar techniques for other purposes such
as joining different networks or cross referencing same entities from different
databases.

1.1.2 Quantitative Analysis

Under this objective I had to implement several algorithms from the Networks
Theory literature, integrate and test with pre-existing libraries in the project,
as well as develop some new methodologies from scratch. We had to organize
and process the results to be sent to the country groups for further qualitative
interpretation.

1.1.3 Visualization

Moreover, an important part of the Quantitative Analysis tasks was to de-
velop and adapt visualization techniques for this particular kind of data.
In this aspect, we implemented and extended some pre-existing ideas and
developed some new ones as well.

6

Chapter 2

Concepts

2.1 What is a social network?

A social network is a modelation of a social structure in which we represent
the social relations that exist between the individuals composing the soci-
ety. This kind of relations can be of many different types, such as financial
exchange, friendship, hate, trade, web links, or airline routes.

In the social network theory, this is seen as nodes (representing the in-
dividuals or organizations), and links (representing the relations between
them). In its simplest form, a social network is a map of all of the relevant
ties between the nodes being studied. These concepts are often displayed in
a social network diagram, where nodes are the points and ties are the lines.
In Figure 2.1 we can see an example of a representation of a social-network.

Figure 2.1: An example of a social network diagram

As we can see, in a social network, the links are more important that
the nodes itself, as it’s representing a complex structure rather than isolated
individuals.

7

A benefit of this representation is that we can make an analogy between
social networks and mathematical models from graph theory. A social net-
work can be seen as a graph as we will see very soon.

2.2 Graph theory

Informally speaking, a graph is a set of objects called points, nodes, or ver-
tices connected by links called lines or edges. In a proper graph, which is by
default undirected, a line from point A to point B is considered to be the
same thing as a line from point B to point A. In a digraph, short for directed
graph, the two directions are counted as being distinct arcs or directed edges.
Typically, a graph is depicted in diagrammatic form as a set of dots (for the
points, vertices, or nodes), joined by curves (for the lines or edges). In Figure
2.2 we can see an example of a representation of a graph.

Figure 2.2: A labeled graph on 6 vertices and 7 edges.

There exist many different ways to define a graph mathematically, but
the most common one is the following.

A graph or undirected graph G is an ordered pair G := (V, E) where V
is a set, whose elements are called vertices or nodes, and E is a set of pairs
(unordered) of distinct vertices, called edges or lines.

With this definition, we can represent the graph in Figure 2.2 like this:

V = 1, 2, 3, 4, 5, 6
E = 1, 2, 1, 5, 2, 3, 2, 5, 3, 4, 4, 5, 4, 6

A directed graph or digraph G is an ordered pair G := (V, A) where V is
a set, whose elements are called vertices or nodes, and A is a set of ordered

8

pairs of vertices, called directed edges, arcs, or arrows.
Note that the unique difference between a graph and a digraph, is that in

a graph the links are unordered pairs while they are ordered in the digraph.
We say that two vertices are adjacent if there is an edge that connects

them. In a social network and adjacency represents a relation between two
individuals.

The neighbors of a vertex v are all the vertices that have and adjacency
with v.

The degree of a vertex v is the number of neighbors of v, or in other
words, the number of edges that connects v to another edge. In a directed
graph though, we must differentiate between in-degree and out-degree. The
in-degree is the number of edges that goes from any vertex to v, while the
out-degree is the number of edges that goes from v to any other vertex.

If it is possible to make a path from any vertex to any other vertex, we
can say that it is a connected graph. If not, the graph is a set of connected
components, isolated between them. Usually, in the social networks, the
network is split

We know that not all the relations between individuals have the same
strength, e.g. two persons can be close friends or be merely acquaintances.
We could be interested in that information, and then we would need a more
powerful model which we call weighted graph. In a weighted graph, all
the edges have a value associated representing it’s weight, and gives us an
indication of the strength of the link. With such a graph, we have indeed
more information, so we could say that this model is more realistic, but in
some cases we could be interested in simplifying our model by ignoring those
strengths and leaving the graph in what we call, and unweighted graph.

As we can see, the analogy between social networks and graphs is very
clear, the vertices of the graph are the nodes of the social network, and the
edges, the links. Fortunately, it’s been done a lot of research in graph theory,
and we can now take advantage of all the knowledge we have about graphs,
applying it to the study of the social networks.

2.3 Properties of social networks

Now that we have a clear idea of what a social network is we can begin to
talk about his properties. Social networks have some common characteristics
other that the ones that define them as a social network, and we will give a
brief summary of them. Since social networks are defined by individuals and
relations among them, we find convenient to start the simplest properties
such the number of individuals and relations. In social networks this two

9

numbers are relatively stable. Individuals eventually leave the network (they
loose the relations or just die), and others join to it, but this happens rarely
with a great number of nodes. The same happens with relations, relations are
created and destroyed, but in general they remain stable. Another interesting
property of social networks is what we call the clustering. It is normal in such
networks to find groups of individuals where everybody has a relation with
everybody, for example, a group of friends where everybody know each other.
We can think about this as the tendency of the network that two individuals
with someone in common know each other. In social networks this tendency
is high, and the reason is the way people are usually introduced to others, that
is by some common friend. This property make social networks to look like a
network of networks rather than a simpler one, where small networks with a
high degree of clustering are connected to others by a relatively small number
of relations. The nodes having this inter cluster edges are known as hubs in
the social network literature. Also interesting is the mean shortest path
length, that intuitively is the number of edges that separate two randomly
chosen nodes. As we will see, social networks have a low mean shortest path
length.

2.3.1 Small World Networks

A small world network is a type of networks in which although the nodes do
not have a very high degree, most nodes are accessible from every other by
a small number of hops. Social networks fall into this group, as well as the
network of routers of internet or gene networks. The psychologist Stanley
Milgram revealed that human society is a small world type network with his
famous experiment of six degrees of separation, in which he proved that two
random persons from the US where able to reach each other by doing no
more than 6 hops. A Small World Network is defined as a network having
a high degree of clustering and a small mean shortest path length. A model
that shows the two properties is the one proposed by Watts and Strogatz
in which they rewire a regular lattice by randomly adding and destroying
edges. The regular lattice will eventually convert into a network showing the
abovementioned properties as it is shown in figure 2.3.

2.3.2 Scale-free networks

A scale free network is defined as a network that have an irregular distribution
of the connectivity. That is, there exist nodes with high degree of connectivity
while the majority have a low degree. They are called scale-free networks
because they don’t have scale, in the sense that their structure and dynamics

10

Figure 2.3: The Watts and Strogatz model interpolates between a regular
lattice and a random network as p varies. For p = 0 the lattice retains it
structure. As p increases the lattice becomes increasingly disordered until at
p = 1 we have a random network

are independent of the system size or number of nodes. In other words, we
can zoom in or out to the network and we always will see the same. The
degree distribution of such networks follow a power low relationship defined
by:

P (k) ∼ k−γ

where the probability P (k) that a node in the network connects with k
other nodes is proportional to k−γ . The coefficient γ may vary approximately
from 2 to 3 for most real networks. This kind of networks can be generated
by a model created by Barabasi et.al. [1] called preferential attachment in
which is simulated the real world preference to be connected to already well
connected nodes (high degree) rather than to lowly connected ones.

11

Chapter 3

Database structure, and data
gathering

3.1 Introduction

In this chapter we will describe the structure and the process of construction
of the worldboards database, which we have built from scratch. The database
contains information about the most relevant firms and directors of the most
economically important countries of the world and the ownership relations
between them. We are also interested in storing into the database the time in
which the data was taken, in order to have chronological information, very
important for studying network dynamics. The data has been taken from
each country by different people. Every person in this team was responsible of
a specific country, usually his own. Then the data was sent to a central place,
where it was revised, cleaned, format-standardized, and finally imported to
the database. This central place was Spain, and Mariano Belinky and me
where responsible for this job.

3.2 Database structure

basically, the schema of the database is the following:

Firms(id, name, country)

Directors(id, name, country)

We store the name of each firm and director. This could be enough
information but since there could be two different directors or firms with
the same name, we need something else to uniquely identify those entities.

12

This is done with the id field, which must be unique. We also store the
country from which the data proceeds. The country field doesn’t strictly
mean the nationality of the firm or the director. There are people with
multiple nationalities, and multinational firms, so we must interpret this
field as the country from which the data was taken. We must note that the
id field perfectly identifies an entity within a country. If we want to identify
an entity, we must provide the id and the country. We could say that the
identifier is the id, country pair. Why we couldn’t just assign an unique id
to each entity? Normally, the data from a specific country was gathered by
a specific person, so we had two options to handle the ids properly:

• each person that is gathering data from a country, must be aware of
the ids that are using the other persons working in the other countries,
in order to not repeat them.

• each person is only aware of his own ids, and then we use the country
code in conjunction of the id to identify an entity worldwide.

We decided that the second solution was better that the first, because the
first one required too much communication between the team, and was much
more error-prone.

FirmsNetwork(firmId1, firmId2, percent, country, year)

DirectorsNetwork(directorId, firmId, country, year)

In the real world, the firms are owned by another firms by a certain per-
centage. In our project, we are mainly interested in this ownership relations
between the firms, and it is stored in the FirmsNetwork table. We identify
the owner firm with (firmId1, country) and the owned firm with (firmId2,
country). The percentage field gives us information of the proportion of the
firm2 owned by firm1. And finally the year is the year in which the data was
taken. We are also interested in knowing who is forming the board of direc-
tors of each firm, and similarly it is done with the table DirectorsNetwork,
but in this case we don’t have a percent field since this is not a ownership
relation that can be weighted but a binary one. We should note that this re-
lations can only exist between firm-firm or director-firm of the same country,
because the field country is shared by the two ids, but this is what we want.
For now, all the studies we’ll do are within a country.

This information can be understood as networks. For each country we
have a different network, disconnected from the others. We could also inter-
pret the percent field as the strength of the edges of the networks.

13

FirmsAttributes(firmId, country, key, value, unit)

DirectorsAttributes(directorId, country, key, value, unit)

Moreover, we also store certain attributes for each entity that could be
useful in the future, such as income, number of workers, in the case of firms,
and date of birth in the case of directors. This is done with the FirmsAt-
tributes and DirectorsAttributes, which each table identifies an entity, gives
the name of the attribute in the key field, and his value in the value field.
We could store this attributes into new columns in the Firms and Directors
tables, but since we don’t know beforehand which attributes we will have to
store, is better to have them in a separate table that permits us to store new
attributes dynamically without having to modify the table schema. We have
also a unit field in the table that sometimes we need. For instance, if we are
storing the income of a firm, besides the value we want to store in which unit
this value must be interpreted (in which currency in the case of money).

We can see, as a summary, that the tables Directors, Firms and his respec-
tive attribute tables represents the nodes of the graph, while DirectorsNet-
work and FirmsNetwork represents the edges. We must note that only the
edges have a time attribute, that means that our model is dynamic over time,
but only edges are created or destroyed, the nodes always exist.

3.3 Data gathering

The data gathering process of the construction of the database has been
done by almost 20 groups of institutions around the world. Each group was
responsible for the data gathering of a country, usually his own 1. This
information is public but usually not computerized, so this process is slow
and methodical. The final result of this step is a document in the excel file
format with all the data collected. Unfortunately, there was no a template to
begin to work with, so every group was sending the file with different layouts,
what gives us the extra work of deal differently with every chunk of data.

3.4 Data Import

The data import is the process where Mariano Belinky and me collected the
excel files from every group and putted them all together into the database
with a single format. The database server is a Microsoft SQL Server 2005.

1When I entered the project, the data from Spain was already gathered, so I did not
have to do this step

14

It was not rare to find errors in the excel files that we had to ask the authors
to correct them, moreover updated versions of the files where sent to us,
so this process was an iterative one. In order to import the data into the
database, the first thing we did is to transform every sheet of the Excel file
into a temporary table in the database. This step can be done easily with
the mentioned database as it has a simple wizard for it. After that, we could
issue sql statements to do queries to the data, and we could manipulate it
more easily, which permitted us to transform it into the required standard
format to be imported into the real database. Usual things to do to the data
was:

• Generate missing identifiers. In some cases the file was sent to us
without integer identifiers, using the name (firm or director) as an
identifier. In that case we had to generate and propagate them to the
other tables (networks and attributes).

• Transform the layout. Sometimes we got the networks in two columns
as an adjacency list, which ease our work, but sometimes we found it
as a matrix with made it much more harder to import. The difficulty
was that we had multiple columns (as many as the maximum degree
on the network), so the sql instruction required was so big that it had
to be generated by another sql instruction2.

• Join same firms or directors appearing in different sheets representing
different years. In our database we maintain a single instance of that
entities although they appear in different years.

All this operations where saved in an sql script for each country because
it was usual to find an error at a later stage so we had to repeat the process.

3.5 Data cleaning

After all the import was been made, we needed to do some cleaning. Some
important steps to do where among the following:

• Detect rows with null values into mandatory fields such identifiers

• Detect duplicates

• Detect identifiers pointing nowhere

2In sql server there are special tables that provides metadata of the user tables such as
the names of the columns, types, etc

15

When such an error was detected, we tried to find out if it came in the
process of importation or was already in the excel file. If the error was in the
process of importation, we corrected it and repeated the import, otherwise,
if the error was severe, we returned the excel file to his author to ask him to
correct it (and other further possible errors) to get it back later, corrected
and ready to be imported again. This data cleaning process could have been
merged to the import process by adding constrains to the database, but we
decided not to use them in order to separate the process into two separate
phases.

3.5.1 Name matching

Also part of the clean-up process is the name matching. In this process we
try to discover duplicated firms or directors in the database. Usually they
appear as two entities given that they are differently spelled, which makes it
harder to find. This kind of problems are common and hard to solve by a
program. We also needed to do name matching to identify same firms and
directors in different countries in order to join the graphs into one global
graph representing the global network of firms and directors. We dedicate
the following chapter to this problem.

16

Chapter 4

Name Matching

4.1 Introduction and objectives

In the data clean-up process, one of the objectives is to remove duplicates.
This is a very typical problem in the informatics world. For instance, we have
found that the firm Telefonica, appears more than once in our database, with
names slightly different. Here is an example of the different names we have
found for the same firm:

Telefonica

TELEFONICA DE ESPANA

TELEFONICA DE ESPANA SA

Telefonica SA

Telefonica S.A.

etc...

A similar thing also happens with director names. Moreover, in order to
join the separated networks we have now for each country, we must detect
same firms and directors in different countries which may appear differently
spelled.

This problems are not trivial to solve automatically, and are often solved
in a complete manual way. But the huge size of the dataset we are dealing
with, makes this approach impractical. Our strategy isn’t fully automatic
though, as the results generated by the machine must be checked manually,
but the major part of the work is done automatically.

The basic idea is to create a function that receives two names(firms or
directors), and gives a score of the similarity of the two names. With such a
function, we could implement a program that simply calls it for each possible

17

pair we have in the database, and show up all the pairs that gets a lower score
than a given threshold. In the next section we will discuss this function.

Our algorithms are all based in the concept of Levenshtein distance which
is a measure of the similarity of two strings.

4.1.1 Levenshtein distance

The Levenshtein distance or edit distance is a string metric. The Levenshtein
distance between two strings is given by the minimum number of operations
needed to transform one string into the other, where an operation is an
insertion, deletion, or substitution of a single character.

For example, the Levenshtein distance between ’kitten’ and ’sitting’ is 3,
since these three edits change one into the other, and there is no way to do
it with fewer than three edits:

1. kitten -> sitten (substitution of ’k’ for ’s’)

2. sitten -> sittin (substitution of ’e’ for ’i’)

3. sittin -> sitting (insert ’g’ at the end)

We must note that this function has some interesting properties

1. d(x, y) = 0 (non-negativity)

2. d(x, y) = 0 if and only if x = y (identity)

3. d(x, y) = d(y, x) (symmetry)

4. d(x, z) = d(x, y) + d(y, z) (triangle inequality).

A commonly-used bottom-up dynamic programming algorithm for com-
puting the Levenshtein distance involves the use of an (n + 1) * (m + 1)
matrix, where n and m are the lengths of the two strings. Here is pseudocode
for a function LevenshteinDistance that takes two strings, s of length m, and
t of length n, and computes the Levenshtein distance between them:

18

This is the pseudo-code for the algorithm

int LevenshteinDistance(char s[1..m], char t[1..n])

// d is a table with m+1 rows and n+1 columns

declare int d[0..m, 0..n]

for i from 0 to m

d[i, 0] := i

for j from 1 to n

d[0, j] := j

for i from 1 to m

for j from 1 to n

if s[i] = t[j] then cost := 0

else cost := 1

d[i, j] := minimum(

d[i-1, j] + 1, // deletion

d[i, j-1] + 1, // insertion

d[i-1, j-1] + cost // substitution

)

return d[m, n]

It can be proved that the abobe algorithm has a complexity of n*m both
for time and space, where n and m are the respective lengths of the input
strings.

Two examples of the resulting matrix (the minimum steps to be taken
are highlighted)

k i t t e n
0 1 2 3 4 5 6

s 1 1 2 3 4 5 6
i 2 2 1 2 3 4 5
t 3 3 2 1 2 3 4
t 4 4 3 2 1 2 3
i 5 5 4 3 2 2 3
n 6 6 5 4 3 3 2
g 7 7 6 5 4 4 3

19

S a t u r d a y
0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7
u 2 1 1 2 2 3 4 5 6
n 3 2 2 2 3 3 4 5 6
d 4 3 3 3 3 4 3 4 5
a 5 4 3 4 4 4 4 3 4
y 6 5 4 4 5 5 5 4 3

20

4.2 Person Name matching algorithms

We have defined a collection of algorithms that all of them calculates a dis-
tance between two given names. For each of them we will give a description
of the algorithm, some examples which will give us a full understanding of
it, and finally do an analysis.

To do the analysis, we have created a dataset of pairs of names in which
we have marked the pairs of names that we know that are the same. More
concretely, our dataset is composed by 5 sets of names. 1427 names from
Canada, 1765 from Israel, 13517 from US, 3022 from France, and 2372 from
Switzerland. We have paired all the names from Canada with all the names
from Israel, Canada with US and France with Switzerland, giving us a total
of 1427 ∗ 1765+ 1427 ∗ 13517+ 3022 ∗ 2372 = 28975598 pairs. Then, we have
half-manually selected the pairs that are the same. Although this dataset is
only a sample of the full one, it’s also inviable to do the matching only by
hand, so we have used different versions of the name matching algorithms
to sort them by distance, and then manually select those that are the same.
We stopped searching when we didn’t found a match in 200 pairs in a row.
We have found a total of 214 matches.

Now we have got a checked dataset which we will use in our analysis. It
contains 28975598 samples, 214 from them are checked real positives, and
the rest, checked real negatives. We can display this proportion in a box, like
this.

Real positive: An element of the dataset in which we are interested to
find. (in our example, the pairs of names that are the same)

Real negative: An element of the dataset in which we are not interested.
(the names that are not the same)

Any element of the dataset is either a real positive or a real negative.
We are trying to find an algorithm that does the job of partitioning the

dataset in two sets called positives and negatives, that are as close as possible
to the real positive, and the real negative sets.

Positive: An element of the dataset that the algorithm has putted in the
positives set.

Negative: An element of the dataset that the algorithm has putted in the
negatives set.

False positive: An element of the dataset that is a Positive and a Real
negative.

False negative: An element of the dataset that is a Negative and a Real
positive.

True positive: An element of the dataset that is a Positive and a Real
positive.

21

Figure 4.1: Real positives and Real negatives

22

Figure 4.2: Positives and Negatives

23

Figure 4.3: True and false positives and negatives

True negative: An element of the dataset that is a Negative and a Real
negative.

We can visualize this concepts with this graphic.
For each algorithm, we are mainly interested in two values, the true pos-

itives ratio truePositivesRatio = truePositives/realPositives ∗ 100 that is
the percentage of real positives that our algorithm is partitioning right (how
many good elements of the total is the algorithm selecting?), and the false
positives ratio falsePositives/positives ∗ 100 that is the percentage of the
positives that are false positives (how many elements will I have to discard
manually after applying the algorithm?). We obviously want a big true pos-
itives ratio and a small false positives ratio, and after doing this analysis to
all the algorithms, we will be in the situation of selecting the best one.

We of course are interested in the running time of each algorithm too, so
we will also calculate the mean running time for each of them in order to get
an idea of the time required for the whole process.

We must note that the majority of the algorithms described here, just
calculates a distance between two given names. In order to get the partition

24

of positives and negatives, the procedure is to apply the algorithm to all the
pairs, and assign to the positives all the pairs with a distance below some
threshold, an to the negatives the rest. As we can see, we have a collection
of algorithms for each threshold, and it’s our job to find the optimum one.

4.2.1 Name clean-up

Before applying any of the algorithms, we must do what we have called the
name clean-up process. This process is useful to remove useless characters
from the names, and to facilitate the work to the name matching algorithms.
The steps we have decided to do to clean the names are the following:

• Convert the name to lower-case

• Convert characters with accents to his non-accent equivalents, e.g. ’a
by a

• Replace separator characters into spaces [. / ,]

• Remove all not alpha characters or spaces, i.e. the 26 characters of the
english alphabet and the space

• Remove useless spaces (removing leading and ending spaces, and re-
placing a repetition of two or more spaces into one)

We can execute the clean-up just before executing the name matching
algorithm, but since a single name must to be matched to thousands of other
names, it could be a bit inefficient. A better solution is to precalculate all
the clean names only once, to then use the cleaned names in the matching.

4.2.2 NFact factor of sums

Description

The purpose of this algorithm is to calculate a distance between two names.
A full name, can be seen as a set of words separated by spaces, and thus, we
will define the distance between two names using the concept of Levenstein
distance between the words that compose each name. The main problem
here is how to know what word should I compare to what other. In this
approach, we will test all the possibilities to only get the lowest distance
found.

The distance between names is calculated by finding an assignation assign
of the words composing the first name to the words of the second name, that
minimizes the following:

25

(4.1) distance =
∑

i

levenshteinDistance(words1[i], words2[assign[i]])

That is, the sum of the distances of the optimum assignation. This value
tells us what is the minimum number of operations needed to do to the words
of one name in order to convert all of them in the words of the other name
(the order of the words doesn’t matter).

For now, this distance is only defined by names with the same number
of words, we will later solve this limitation. We must also note that since
we only want to test the possibles permutations of the words composing the
second name, there must not exist any repetition in the vector assign.

The trivial way to find the optimal assignation is the brute force approach,
i.e. testing all possible permutations, which are exactly N !, where N is the
number of words of each name we are comparing. It may seem a very slow
solution, but since we are comparing names (firms or directors), which have
typically 3 or 4 words, this solution may be an option.

We want this optimal value found to be normalized, so we divide it by
the maximum possible value.

(4.2) max =
∑

i

max(len(words[i]), len(words[assign[i]]))

(4.3) normalizedDistance = nameDistance/max

This way we will obtain a value from 0 to 1. zero for exactly the same
names (even if the words appear in different order), and one for completely
different names.

Finally, we can define the distance between names for names with different
number of words, by adding empty words to the name with less words until we
have the same number in both. Then, we can use the algorithm as explained
before.

We have found some exceptional names that have a large number of words,
for which this algorithm is extremely slow. We have decided that for this
names we will apply the algorithm only for his 5 largest words.

We have called NFact factor of sums to this algorithm, because it has a
cost in time of N !, and it is calculated by dividing two sums.

26

Examples

Now we will follow the entire process with an example. Suppose we want to
calculate the distance between the names ”GREENBERG, MICHAEL M.”
and ”Michael Grinberg”. First, we will clean up the names, removing the
comma and the dot of the first name, for after converting all the characters
to lowercase. After that, we separate the names into words, and add an extra
empty word to the smallest one to match the number of words of each one.

Names Clean Names words
Greenberg, Michael M. greenberg michael m ’greenberg’, ’michael’, ’m’
Michael Grinberg michael grinberg ’michael’, ’grinberg’, ”

Now is time to apply the equation (4.11) for every possible combination
(6), and get the lowest result.

name1 name2 lev name1 name2 lev
greenberg michael 8 greenberg michael 8
michael grinberg 7 michael 7
m 1 m grinberg 8

total 16 22

greenberg grinberg 2 greenberg grinberg 2
michael michael 0 michael 7
m 1 m michael 6

total 3 15

greenberg 9 greenberg 9
michael michael 0 michael grinberg 7
m grinberg 8 m michael 6

total 17 22

Obviously the optimum assignation here is greenberg with grinberg, michael
with michael, and the initial m alone, which gives us a total of three steps.

Now, we have to normalize this value by the maximum value possible
given the length of the strings and the optimum assignation, in order to get
a value in a fixed range from 0 to 1, and thus, be able to do comparisons
between pairs of names with different lengths. Applying equations 4.12 and
4.13:

27

max = max(len(”greenberg”), len(”grinberg”))

+max(len(”michael”), len(”michael”))

+max(len(”m”), len(””))

max = max(9, 8) + max(7, 7) + max(1, 0)

max = 9 + 7 + 1 = 17

normalizedDistance = 3/17 = 0.176471

This means that we have to modify a minimum of the 17% of the char-
acters from one name to convert it to the other, so it’s probably a good
candidate.

Analysis

Now is time to do the analysis as explained in the beginning of this section.
We need to find a distance below which the pairs are good candidates (the
threshold). Since we have a dataset with the real positives already marked,
we can generate an histogram of the distances of the real positives and an-
other with the real negatives. Then, we must visually set a threshold below
which there are the majority of real positives, and above which there are the
majority of the real negatives.

With this in mind, it’s clear that a good algorithm will be that one that
distributes the real positives to the left, and the real negatives to the right,
so this way we can easily find a good partition.

In Figure 4.4 we can see that, indeed, the real positives are in his majority
distributed to the left, which is a good thing, let’s see what happens to the
real negatives in the Figure 4.5.

They are too, mainly distributed where we want, but since there are so
many real negatives with a big distance, we can hardly see what happens in
the lower ranges. Let’s see another histogram from the real negatives but
only showing those with a distance below 0.4 (Figure 4.6).

With those histograms, we have an intuitive idea of the distribution that
this algorithm does, but since we will have to compare each of the algorithm,
it’s a good idea to generate a table (Figure 4.7) that gives us more clear
information.

Every row of the table, can be seen as a different algorithm, the only
difference between them is the threshold (first column), which is the limit
of distance above which a distance is considered a negative, and below a

28

Figure 4.4: Real positives histogram

29

Figure 4.5: Real negatives histogram

30

Figure 4.6: Real negatives histogram (less than 0.4)

31

positive. Then, the following columns are, respectively, number of positives,
number of negatives, number of false negatives, number of false positives,
true positives percentage over the number of real positives, and false posi-
tives percentage over the number of positives. We can see in the next table a
legend with all the column names. We will summarize the table by showing
only to a threshold of 0.8 since we are sure we will not be interested in greater
values.

legend meaning
t threshold
tp true positives
tn true negatives
fn false negatives
fp false positives
tpp true positives ratio
fpp false positives ratio

Here we can see for instance, that setting the threshold to 0.25, we will
get the 78% of the real positives, and the 76% of the positives will be false
positives.

Running Time

To complete the analysis, we will calculate for each algorithm the total run-
ning time of doing 28976026 comparisons, and the average running time per
comparison.

Number of comparisons 28976026
Time in milliseconds 901953
Average running time 0.03112756041839554

32

t tp tn fn fp tpp fpp
0,025 95 28975345 119 0 44,3925 0
0,05 95 28975345 119 0 44,3925 0
0,075 112 28975322 102 23 52,3364 17,037
0,1 123 28975283 91 62 57,4766 33,5135
0,125 126 28975276 88 69 58,8785 35,3846
0,15 132 28975254 82 91 61,6822 40,8072
0,175 137 28975208 77 137 64,0187 50
0,2 145 28975170 69 175 67,757 54,6875
0,225 158 28974994 56 351 73,8318 68,9587
0,25 167 28974793 47 552 78,0374 76,7733
0,275 179 28974087 35 1258 83,6449 87,5435
0,3 181 28973264 33 2081 84,5794 91,9982
0,325 183 28971629 31 3716 85,514 95,3065
0,35 184 28968929 30 6416 85,9813 97,2121
0,375 187 28963625 27 11720 87,3832 98,4295
0,4 187 28956334 27 19011 87,3832 99,0259
0,425 191 28943086 23 32259 89,2523 99,4114
0,45 192 28924548 22 50797 89,7196 99,6234
0,475 195 28883816 19 91529 91,1215 99,7874
0,5 195 28883586 19 91759 91,1215 99,7879
0,525 198 28824491 16 150854 92,5234 99,8689
0,55 203 28743778 11 231567 94,8598 99,9124
0,575 203 28664375 11 310970 94,8598 99,9348
0,6 203 28606836 11 368509 94,8598 99,9449
0,625 208 28457642 6 517703 97,1963 99,9598
0,65 210 28163292 4 812053 98,1308 99,9741
0,675 212 27839245 2 1136100 99,0654 99,9813
0,7 213 27294971 1 1680374 99,5327 99,9873
0,725 214 26439258 0 2536087 100 99,9916
0,75 214 25580914 0 3394431 100 99,9937
0,775 214 23061455 0 5913890 100 99,9964
0,8 214 20909580 0 8065765 100 99,9973

Figure 4.7: Table for NFact factor of sums

33

4.2.3 NFact sum of factors

Description

This is an algorithm very similar to the one explained before, and the differ-
ence resides in the sum up of the individual levenstein distances. In this new
algorithm, the total distance is the mean of individual normalized levenstein
distances for the optimal assignation. For a normalized levenstein distance,
we understand the levenstein distance divided by his maximum value given
the length of the strings, that is, the maximum of the length of the two
strings. This can be written as:

(4.4)

distance = (
∑

i

levenshteinDistance(words1[i], words2[assign[i]])

max(len(words[i]), len(words[assign[i]]))
)/N

Where assign is the optimal assignation (i.e. the one that minimizes the
total distance) and N is the number of words that composes both names.
This algorithm is essentially the same as the one explained before, the only
thing that changes is the formula, so everything explained in the last algo-
rithm, applies here too.

With this way of summing up, each word counts the same in the sum,
no matter his length is (this is because each words distance is normalized
before being summed). So it will be the same to sum an initial versus an
empty string than a very lengthy words against another empty string. Is just
another way of summing up, and it’s not clear which method is better, that’s
a question that we are trying to answer with this analysis.

We have called it Nfact Sum of factors because his cost in time is N ! and
his calculation involves a sum up of small factors.

Examples

In this example, we will match ”BERKOVITS, SAMUEL J.” against ”Shmuel
Berkowitz”. First of all, clean up the names.

Names Clean Names words
BERKOVITS, SAMUEL J. berkovits samuel j ’berkovits’, ’samuel’, ’j’
Shmuel Berkowitz shmuel berkowitz ’shmuel’, ’berkowitz’, ”

Now we must apply the equation 4.11 for every possible combination of
assignations (6), and get the lowest result.

34

name1 name2 d name1 name2 d
berkovits shmuel 9/9 berkovits shmuel 9/9
samuel berkowitz 9/9 samuel 6/6
j 1/1 j berkowitz 9/9

mean 1 1

name1 name2 d name1 name2 d
berkovits berkowitz 2/9 berkovits berkowitz 2/9
samuel shmuel 1/6 samuel 6/6
j 1/1 j shmuel 6/6

mean 0.46 0.74

name1 name2 d name1 name2 d
berkovits 9/9 berkovits 9/9
samuel berkowitz 9/9 samuel shmuel 1/6
j shmuel 6/6 j berkowitz 9/9

mean 1 0.72

The best assignation found is berkovits with berkowitz, samuel with
shmuel, and j alone, and it gets 0.46

Analysis

Now, as before, we will show the histogram of positives (Figure 4.8), the
histogram of negatives (Figure 4.9), the same histogram amplified (Figure
4.10), and finally the table (Figure 4.11) that relations the threshold with the
number of true positives, number of true negatives, number of false positives,
number of false negatives, true positives percentage over the number of real
positives, and false negatives percentage over the number of positives.

Here we can see for instance, that setting the threshold to 0.2, we will
get the 55% of the real positives, and the 72% of the positives will be false
positives. Comparing this result with the results obtained in the analysis of
the algorithm Nfact factor of sums (e.g. 78% of the real positives and 76%
of negatives), we can fairly say that this algorithm is a bit worst that the
previous one.

Running Time

Number of comparisons 28976026
Time in milliseconds 916797
Average running time 0.031639845988542394

35

Figure 4.8: Real positives histogram

36

Figure 4.9: Real negatives histogram

37

Figure 4.10: Real negatives with less than 0.4 histogram

38

t tp tn fn fp tpp fpp
0,025 95 28975345 119 0 44,3925 0
0,05 97 28975345 117 0 45,3271 0
0,075 101 28975344 113 1 47,1963 0,9804
0,1 106 28975343 108 2 49,5327 1,8519
0,125 109 28975338 105 7 50,9346 6,0345
0,15 114 28975303 100 42 53,271 26,9231
0,175 117 28975195 97 150 54,6729 56,1798
0,2 118 28975036 96 309 55,1402 72,3653
0,225 124 28974356 90 989 57,9439 88,8589
0,25 127 28973673 87 1672 59,3458 92,9405
0,275 131 28971948 83 3397 61,215 96,2868
0,3 133 28967097 81 8248 62,1495 98,4131
0,325 134 28966004 80 9341 62,6168 98,5858
0,35 161 28959726 53 15619 75,2336 98,9797
0,375 163 28957169 51 18176 76,1682 99,1112
0,4 170 28950846 44 24499 79,4393 99,3109
0,425 177 28939855 37 35490 82,7103 99,5037
0,45 185 28917803 29 57542 86,4486 99,6795
0,475 191 28890399 23 84946 89,2523 99,7757
0,5 195 28853201 19 122144 91,1215 99,8406
0,525 199 28744944 15 230401 92,9907 99,9137
0,55 199 28648434 15 326911 92,9907 99,9392
0,575 200 28448959 14 526386 93,4579 99,962
0,6 200 28280553 14 694792 93,4579 99,9712
0,625 200 28072935 14 902410 93,4579 99,9778
0,65 200 27864026 14 1111319 93,4579 99,982
0,675 209 27615491 5 1359854 97,6636 99,9846
0,7 209 27337510 5 1637835 97,6636 99,9872
0,725 209 26908149 5 2067196 97,6636 99,9899
0,75 210 26379421 4 2595924 98,1308 99,9919
0,775 214 25167769 0 3807576 100 99,9944
0,8 214 23616482 0 5358863 100 99,996

Figure 4.11: Table for NFact sum of factors

39

4.2.4 NM factor of sums

Description

Since the algorithms explained in the two previous sections are a bit costly
computationally, we will define a new distance between names that is a bit
less costly and should give good results too.

The definition of the distance is essentially the same as the explained in
the section NFact factor of sums, but in this case we allow repetitions in the
assignation, i.e. all the words of the first name are assigned to words of the
second, but a word of the second can be assigned to zero, one or more words
of the first. We always select the name with fewer words as the first one.

With this new definition of distance, we can compute the optimal value
without testing all the permutations, we can simply select the best assigna-
tion for each word of the first name. The cost of this algorithm is then N*M,
where N and M are the respective number of words of the two names.

Note that in this version of the algorithm there is no need to add extra
empty words as we did in the first version of the algorithm.

We have called NM factor of sums to this algorithm because is very similar
to NFact factor of sums, but with an N ∗ M cost in time where N is the
number of words of the first name, and M the number of words of the second.

Examples

In this new example, we will match the fictional names ”Fernando Fernan-
dez” against ”Ferran Garcia”.

name1 name2 d
Fernando Ferran 3
Fernando Garcia 7

At this point, we know already that Fernando will be assigned to Ferran,
with a distance of 3.

name1 name2 d
Fernandez Ferran 4
Fernandez Garcia 8

And Fernandez will be again assigned to Ferran, with a distance of 4.
Therefore, the total distance, applying the formula, will be:

40

(4.5) distance =
∑

i

levenshteinDistance(words1[i], words2[assign[i]])

(4.6) max = SUMmax(len(words[i]), len(words[assign[i]]))

(4.7) normalizedDistance = nameDistance/max

distance = 3 + 4 = 7

max = max(8, 6) + max(9, 6) = 8 + 9 = 17

normalizedDistance = 7/17 = 0.412

Analysis

Now, as usual, we will present the histograms and the table.
Taking a look at the table, we can see for instance 65% of positives and

0.7% of negatives with a threshold of 0.025. This is surprisingly considerably
better than the algorithms explained before, even though they where much
more costly. The drawback is that 65% of positives is not much, and if
we want to increase this ratio, the negative ratio also increases very quickly,
letting the algorithm from being usable for thresholds greater than 0.1, where
the ratio of negatives is near 100%.

Running Time

Number of comparisons 28976026
Time in milliseconds 452453
Average running time 0.01561473612703136

41

Figure 4.12: Real positives histogram

42

Figure 4.13: Real negatives histogram

43

t tp tn fn fp tpp fpp
0,025 140 28975344 74 1 65,4206 0,7092
0,05 142 28974674 72 671 66,3551 82,5338
0,075 167 28742948 47 232397 78,0374 99,9282
0,1 191 27642198 23 1333147 89,2523 99,9857
0,125 201 22691647 13 6283698 93,9252 99,9968
0,15 210 10996683 4 17978662 98,1308 99,9988
0,175 211 3627741 3 25347604 98,5981 99,9992
0,2 212 1553691 2 27421654 99,0654 99,9992
0,225 214 221289 0 28754056 100 99,9993
0,25 214 112692 0 28862653 100 99,9993
0,275 214 10572 0 28964773 100 99,9993
0,3 214 7012 0 28968333 100 99,9993
0,325 214 2810 0 28972535 100 99,9993
0,35 214 317 0 28975028 100 99,9993
0,375 214 317 0 28975028 100 99,9993
0,4 214 76 0 28975269 100 99,9993
0,425 214 59 0 28975286 100 99,9993
0,45 214 32 0 28975313 100 99,9993
0,475 214 32 0 28975313 100 99,9993
0,5 214 32 0 28975313 100 99,9993
0,525 214 2 0 28975343 100 99,9993
0,55 214 2 0 28975343 100 99,9993
0,575 214 2 0 28975343 100 99,9993
0,6 214 2 0 28975343 100 99,9993
0,625 214 2 0 28975343 100 99,9993
0,65 214 2 0 28975343 100 99,9993
0,675 214 2 0 28975343 100 99,9993
0,7 214 2 0 28975343 100 99,9993
0,725 214 2 0 28975343 100 99,9993
0,75 214 2 0 28975343 100 99,9993
0,775 214 0 0 28975345 100 99,9993
0,8 214 0 0 28975345 100 99,9993

Figure 4.14: Table for NM factor of sums

44

4.2.5 NM sum of factors

Description

This algorithm is the analog to the NFact sum of factors, but with the par-
ticularity of the previous algorithm, that is, we allow repetitions in the assig-
nation, making the algorithm a bit faster.

Examples

We will use the same example as the previous algorithm, ”Fernando Fernan-
dez” against ”Ferran Garcia”. As we remember, the bests assignations where
Fernando against Ferran, with a distance of 3, and Fernandez against Ferran,
with a distance of 4. Therefore, applying the formula we get:

(4.8)

distance = (
∑

i

levenshteinDistance(words1[i], words2[assign[i]])

max(len(words[i]), len(words[assign[i]]))
)/N

distance = (3/max(8, 6) + 4/max(9, 6))/2

distance = (3/8 + 4/9)/2 = 0.41

Analysis

Let’s do the analysis.
We can see very good results with this new method, for instance 84% of

the real positives with less than the half of negatives.

Running Time

Number of comparisons 28976026
Time in milliseconds 447734
Average running time 0.015451877355438596

45

Figure 4.15: Real positives histogram

46

Figure 4.16: Real negatives histogram

47

t tp tn fn fp tpp fpp
0,025 140 28975344 74 1 65,4206 0,7092
0,05 142 28975329 72 16 66,3551 10,1266
0,075 150 28975325 64 20 70,0935 11,7647
0,1 159 28975321 55 24 74,2991 13,1148
0,125 167 28975303 47 42 78,0374 20,0957
0,15 180 28975172 34 173 84,1121 49,0085
0,175 187 28974790 27 555 87,3832 74,7978
0,2 192 28974402 22 943 89,7196 83,0837
0,225 204 28972359 10 2986 95,3271 93,605
0,25 208 28970718 6 4627 97,1963 95,698
0,275 211 28964960 3 10385 98,5981 98,0087
0,3 212 28955827 2 19518 99,0654 98,9255
0,325 212 28952123 2 23222 99,0654 99,0953
0,35 213 28939843 1 35502 99,5327 99,4036
0,375 214 28929357 0 45988 100 99,5368
0,4 214 28906419 0 68926 100 99,6905
0,425 214 28862113 0 113232 100 99,8114
0,45 214 28800718 0 174627 100 99,8776
0,475 214 28742077 0 233268 100 99,9083
0,5 214 28665685 0 309660 100 99,9309
0,525 214 28444600 0 530745 100 99,9597
0,55 214 28256358 0 718987 100 99,9702
0,575 214 27945276 0 1030069 100 99,9792
0,6 214 27720753 0 1254592 100 99,9829
0,625 214 27438795 0 1536550 100 99,9861
0,65 214 26993060 0 1982285 100 99,9892
0,675 214 26435565 0 2539780 100 99,9916
0,7 214 25677857 0 3297488 100 99,9935
0,725 214 24312358 0 4662987 100 99,9954
0,75 214 23009385 0 5965960 100 99,9964
0,775 214 19983369 0 8991976 100 99,9976
0,8 214 17279400 0 11695945 100 99,9982

Figure 4.17: Table for NM factor of sums

48

4.2.6 NM maximum minimum

Description

This algorithm is a modification of the two last algorithms. The concept is
the same, it only changes the formula to get the total distance, and is the
following:

(4.9) distance = max(
levenshteinDistance(words1[i], words2[assign[i]])

max(len(words[i]), len(words[assign[i]]))
)

That is, we find the best assignation of each word, and then we select the
worst distance found this way. That’s why we have called this algorithm the
maximum minimum.

Examples

Recalling the example of the two previous algorithms, we had as best assig-
nations Fernando against Ferran, with a distance of 3, and Fernandez against
Ferran, with a distance of 4. Therefore, applying the formula we get:

distance = max(3/max(8, 6), 4/max(9, 6))

distance = max(3/8, 4/9) = 4/9 = 0.44

Analysis

This algorithm is even better than the previous one, we get a 85% of the real
positives with only a 33% of negatives.

Running Time

Number of comparisons 28976026
Time in milliseconds 448485
Average running time 0.015477795333286904

49

Figure 4.18: Real positives histogram

50

Figure 4.19: Real negatives histogram

51

t tp tn fn fp tpp fpp
0,025 140 28975344 74 1 65,4206 0,7092
0,05 140 28975344 74 1 65,4206 0,7092
0,075 140 28975344 74 1 65,4206 0,7092
0,1 140 28975344 74 1 65,4206 0,7092
0,125 142 28975344 72 1 66,3551 0,6993
0,15 149 28975326 65 19 69,6262 11,3095
0,175 157 28975321 57 24 73,3645 13,2597
0,2 157 28975321 57 24 73,3645 13,2597
0,225 165 28975313 49 32 77,1028 16,2437
0,25 165 28975313 49 32 77,1028 16,2437
0,275 173 28975296 41 49 80,8411 22,0721
0,3 183 28975253 31 92 85,514 33,4545
0,325 183 28975252 31 93 85,514 33,6957
0,35 191 28974887 23 458 89,2523 70,5701
0,375 191 28974883 23 462 89,2523 70,7504
0,4 194 28974780 20 565 90,6542 74,4401
0,425 200 28974137 14 1208 93,4579 85,7955
0,45 207 28972669 7 2676 96,729 92,82
0,475 208 28972649 6 2696 97,1963 92,8375
0,5 208 28972649 6 2696 97,1963 92,8375
0,525 209 28958665 5 16680 97,6636 98,7625
0,55 210 28958387 4 16958 98,1308 98,7768
0,575 211 28923951 3 51394 98,5981 99,5911
0,6 211 28923594 3 51751 98,5981 99,5939
0,625 211 28886734 3 88611 98,5981 99,7624
0,65 211 28834910 3 140435 98,5981 99,85
0,675 211 28481713 3 493632 98,5981 99,9573
0,7 211 28392093 3 583252 98,5981 99,9638
0,725 211 27729646 3 1245699 98,5981 99,9831
0,75 211 27668749 3 1306596 98,5981 99,9839
0,775 213 26636586 1 2338759 99,5327 99,9909
0,8 213 25955319 1 3020026 99,5327 99,9929

Figure 4.20: Table for NM factor of sums

52

4.2.7 NM maximum minimum with contractions

Description

Since we have seen a lot of names with contractions of the names, we have
introduced a modification to the previous algorithm that has this in mind,
given more punctuation when a contraction is found. For instance, if we
where comparing ”Jordi Colomer” against ”J Colomer”, ”Jordi” would be
matched to ”J”, because it has a distance of 4 that is less than the distance
of ”Jordi” to ”Colomer”. But since ”J” is a contraction of ”Jordi”, this
new algorithm will give to this pair the half of the steps than the previous
algorithm, putting the two words much closer as they are likely to be the
same.

The mathematical formula to calculate this, is exactly the same as the
previous algorithm, but now we have replaced the levenstein function with
an another one.

(4.10)

distance = max(
levenshteinDistanceWithContractions(words1[i], words2[assign[i]])

max(len(words[i]), len(words[assign[i]]))
)

we will give the pseudo-code for this new function

function levenshteinDistanceWithContractions(string s1, string s2)

returns integer

integer d = levenshteinDistance(s1, s2)

if (s1 is contraction of s2 OR s2 is contraction of s1) return d/2

else return d

end function

For contraction we understand that one string begins with the another

Examples

As an example, we will use the one we have introduced in the description
section.

name1 name2 d contr
Jordi J 4/5/2 yes
Jordi Colomer 6/7 no

Jordi is assigned to J with a distance of 0.4.

53

Figure 4.21: Real positives histogram

name1 name2 d contr
Colomer J 7/7 no
Colomer Colomer 0/7/2 yes

And obviously, Colomer is assigned to Colomer with a distance of 0.
Then, we pick up the maximum value found which is 0.4.

Analysis

We can see in the results that this modification has indeed improved a bit
the algorithm. These are the best results we have achieved so far.

Running Time

Number of comparisons 28976026
Time in milliseconds 448297
Average running time 0.01547130721100264

54

Figure 4.22: Real negatives histogram

55

t tp tn fn fp tpp fpp
0,025 140 28975344 74 1 65,4206 0,7092
0,05 140 28975344 74 1 65,4206 0,7092
0,075 140 28975332 74 13 65,4206 8,4967
0,1 141 28975332 73 13 65,8879 8,4416
0,125 144 28975331 70 14 67,2897 8,8608
0,15 154 28975324 60 21 71,9626 12
0,175 163 28975319 51 26 76,1682 13,7566
0,2 165 28975319 49 26 77,1028 13,6126
0,225 180 28975295 34 50 84,1121 21,7391
0,25 181 28975295 33 50 84,5794 21,645
0,275 190 28975247 24 98 88,785 34,0278
0,3 198 28975182 16 163 92,5234 45,1524
0,325 198 28975172 16 173 92,5234 46,6307
0,35 204 28974369 10 976 95,3271 82,7119
0,375 204 28974354 10 991 95,3271 82,9289
0,4 206 28971896 8 3449 96,2617 94,3639
0,425 211 28950253 3 25092 98,5981 99,1661
0,45 213 28914899 1 60446 99,5327 99,6489
0,475 213 28911861 1 63484 99,5327 99,6656
0,5 213 28911852 1 63493 99,5327 99,6657
0,525 214 28880528 0 94817 100 99,7748
0,55 214 28880025 0 95320 100 99,776
0,575 214 28821638 0 153707 100 99,861
0,6 214 28821158 0 154187 100 99,8614
0,625 214 28764751 0 210594 100 99,8985
0,65 214 28693406 0 281939 100 99,9242
0,675 214 28256042 0 719303 100 99,9703
0,7 214 28158219 0 817126 100 99,9738
0,725 214 27395230 0 1580115 100 99,9865
0,75 214 27329371 0 1645974 100 99,987
0,775 214 26239885 0 2735460 100 99,9922
0,8 214 25525954 0 3449391 100 99,9938

Figure 4.23: Table for NM factor of sums

56

4.2.8 Shortcuts

4.2.9 Shortcuts 1. Initials

Description

Since we have a very large dataset, we want our algorithm to be as quick as
possible. A possible solution to speed-up the process is to add some shortcuts.
That is, very simple initial checks that tells us if it’s worth executing all the
distance algorithm. For instance, if we only check the initials of two names
and realize that they no match, we can be pretty sure that the distance of
these names will be big.

This check tells us how many initials are the same in the two names. This
value is then divided by the total number of words of the two names. Then
we define a threshold below which two names will be candidates of being the
same, and thus, the full distance algorithm will be executed. Otherwise, the
two names will be simply discarded.

Example:

name1 name2 initials
Jordi Colomer Joan Costa 4/4=1
Jordi Colomer Joan Gonzalez 2/4=0.5
Jordi Colomer Pere Gonzalez 0

In our experiments, we have selected 0.5 as the threshold, that means that
all the names that have more than the half of the initials different are auto-
matically discarded.

The description of the algorithm is the following. First we extract the
initials of each name as a string, then we sort the characters forming this
string. Then we see how many characters of the two strings match with the
following algorithm:

57

public static float initials(string init1, string init2) {

char[] cs1 = init1.ToCharArray();

char[] cs2 = init2.ToCharArray();

int score = 0;

int i1 = 0;

int i2 = 0;

while (cs1.Length > i1 && cs2.Length > i2) {

char c1 = cs1[i1];

char c2 = cs2[i2];

if (c1 == c2) {

cs1[i1] = ’ ’;

cs2[i2] = ’ ’;

score += 2;

i1++;

i2++;

} else if (c1 > c2) {

i2++;

} else {

i1++;

}

}

return (float)score / (cs1.Length + cs2.Length);

}

It’s easy to see that the cost in time of this algorithm is linear with the
length of the input strings. One optimization is to precalculate the initials
string of each name so we don’t have to do it every time.

Analysis

We can test this shortcut method with any algorithm that we have created,
and since the NM maximum minimum with contractions is the one which
has given us the best results, we will do the tests with this one. In this case
we will only show the table.

Probably the best option is to select the threshold of 0.3 that has 89%
of true positives and 38% of false positives. Surprisingly, this shortcut has
lowered the number of false positives compared to the original algorithm
which is good, as well as the number of true positives (bad) and the running
time to practically the half.

58

t tp tn fn fp tpp fpp
0,025 136 28975344 78 1 63,5514 0,7299
0,05 136 28975344 78 1 63,5514 0,7299
0,075 136 28975332 78 13 63,5514 8,7248
0,1 137 28975332 77 13 64,0187 8,6667
0,125 140 28975331 74 14 65,4206 9,0909
0,15 149 28975324 65 21 69,6262 12,3529
0,175 157 28975319 57 26 73,3645 14,2077
0,2 159 28975319 55 26 74,2991 14,0541
0,225 174 28975300 40 45 81,3084 20,5479
0,25 175 28975300 39 45 81,7757 20,4545
0,275 183 28975262 31 83 85,514 31,203
0,3 191 28975226 23 119 89,2523 38,3871
0,325 191 28975217 23 128 89,2523 40,1254
0,35 197 28974828 17 517 92,0561 72,409
0,375 197 28974815 17 530 92,0561 72,9023
0,4 199 28973687 15 1658 92,9907 89,2838
0,425 204 28964764 10 10581 95,3271 98,1085
0,45 206 28949426 8 25919 96,2617 99,2115
0,475 206 28948586 8 26759 96,2617 99,236
0,5 206 28948577 8 26768 96,2617 99,2363
0,525 207 28935396 7 39949 96,729 99,4845
0,55 207 28935128 7 40217 96,729 99,4879
0,575 207 28915884 7 59461 96,729 99,6531
0,6 207 28915704 7 59641 96,729 99,6541
0,625 207 28898766 7 76579 96,729 99,7304
0,65 207 28877786 7 97559 96,729 99,7883
0,675 207 28777867 7 197478 96,729 99,8953
0,7 207 28755152 7 220193 96,729 99,9061
0,725 207 28610117 7 365228 96,729 99,9434
0,75 207 28597020 7 378325 96,729 99,9453
0,775 207 28425062 7 550283 96,729 99,9624
0,8 207 28323966 7 651379 96,729 99,9682

Figure 4.24: Table for NM maximum minimum contract with shortcut

59

Running Time

Number of comparisons 28976026
Time in milliseconds 209578
Average running time 0.0072328068728265225

60

4.2.10 Shortcuts 2. Metric trees

One way to reduce the running time of the process is to use a special data
structure called metric tree. A metric tree is any tree data structures spe-
cialized to index data in metric spaces. Metric trees exploit properties of
metric spaces such as the triangle inequality to make accesses to the data
more efficient. Examples include vp-trees[5], m-trees and bk trees.

A vp-tree or vantage point tree is a binary tree in which the nodes are
objects that have a distance metric defined (names in our case). With this
tree, we can search all the neighbors1 of a given name very quickly. Tree
construction executes in O(nlog(n)), and search is O(log(n)) expected time.

It’s very important that the distance function we use complies the triangle
inequality. The triangle inequality means that the distance between two
elements is always shortest or equal to the sum of distances between each of
the elements to another. This can be expressed mathematically as:

d(a, b) <= d(a, c) + d(b, c)
Each element in the tree has an integer attribute called median, and all

the elements hanging from his left child are at a closest distance than the
median while all the elements of the right child are at a farther distance.
This property can be exploited while we are searching for neighbors as we
will see very soon.

Construction of the metric tree

As we construct the tree, we must ensure that we comply the above mentioned
property. Our algorithm of construction will be the following: His input is an
array of nodes, then we select randomly one of them, calculate the distance of
that node with all the other nodes, sort the nodes by the distance calculated,
partition the sorted array in two equal parts and assign the lowest part to
be the left child of the selected node, and the other half the right child, set
the median of the selected node with the median of the distances, and finally
repeat the process with every child. We give the Java code that constructs
the tree with this algorithm.

private TNode addNode(Node nodes[], int begin, int end) {

int delta = end - begin;

int middle = begin + delta / 2;

TNode node = new TNode(nodes[begin].get());

1By neighbors of an element we understand all elements that are less distant than a
given threshold.

61

calculateDistances (node , nodes, begin, end);

orderDistances (nodes, begin, end);

float min = nodes[middle].getDistance();

float max = nodes[middle+1].getDistance();

node.setMedian((min+max)/2);

if (delta + 1 > 0) {

if (middle - (begin + 1) >= 1) {

node.setLeft(addNode(nodes, begin + 1, middle));

} else if (middle - (begin + 1) == 0) {

node.setLeft(new TNode(nodes[middle].get()));

}

if ((end - (middle + 1)) >= 1) {

node.setRight(addNode(nodes, middle + 1, end));

} else if (end - (middle + 1) == 0) {

node.setRight(new TNode(nodes[middle + 1].get()));

}

}

return node;

}

As every iteration of recursivity divides the size of the problem in two
subproblems of the same complexity and half size, it’s clear that the cost of
this algorithm is at most Nlog(N), where N is the size of the array.

To illustrate the algorithm, we will present a sample input and the result
of applying the algorithm

Input: Jordi, Albert, Ramon, Pere, Joan, Raquel, Sara, Maria.
Output:

Jordi: 0.8

left: Joan 1.0

left: Sara 0.0

right: Pere 0.0

right: Maria 0.81666666

left: Ramon 0.0

right: Raquel 0.5

right: Albert 0.0

In this example we can see for instance that Jordi has a median of 0.8
which means that everybody accessible through his left (Joan, Sara and Pere)

62

is at most at a distance of 0.8 from Jordi, while everybody accessible through
his right is at a higher distance (Maria, Ramon, Raquel and Albert). As we
can see, this property can be exploited while we are searching as we’ll see in
the next section.

Searching the tree

The process of searching is done when we want to find all the nodes of the
tree that are at less distance to a given node Q than a given threshold range.
With this kind of data structure we can indeed discard a lot of nodes while
we are searching, thus, reducing the running time of the process. The search
begins on the root of the tree, if the root is at less distance than the range
specified, it’s added to the results, and the process is repeated with his left
and right children, but if the distance calculated plus the range specified is
less than the median distance+range < median, we can safely discard all the
nodes accessible through his right, because we know that all of them are to a
greater distance than median from the root, and with the triangle inequality
we know that therefore none of them can be at less distance than range from
Q. Analogically, the nodes accessible through his left can be discarded when
distance−range > median. The Java code of this algorithm is the following.

private void rangeTraversal(Object query,

float range,

TNode tNode,

List results) {

if (tNode == null) return;

float distance = this.distance.d(query.toString(), tNode.toString());

if (distance < range) results.add(tNode.get());

if((distance + range) < tNode.getMedian()) {

rangeTraversal(query, range, tNode.getLeft(), results);

} else if((distance - range) > tNode.getMedian()) {

rangeTraversal(query, range, tNode.getRight(), results);

} else {

rangeTraversal(query, range, tNode.getLeft(), results);

rangeTraversal(query, range, tNode.getRight(), results);

}

}

63

t tp tn fn fp tpp fpp
0.1 71 28975341 143 4 33.177 5.333
0.2 148 28975321 66 24 69.158 13.953
0.3 191 28975193 23 152 89.252 44.314

Figure 4.25: Table for metric tree

thres total average
0.1 90219 0.003113573
0.2 364891 0.012592858
0.3 403969 0.013941490

Figure 4.26: Table for running times of metric tree

The cost of the algorithm is hard to predict because it’s difficult to know
how many cut-offs will be made. The worst case is when all the nodes are
visited (for example when a range of 1.0 is specified), and then is N , and
the best case is when in every iteration a branch is discarded, and should be
logN (since we know that the tree has at most logN levels).

Analysis

To do the analysis, we have to select a distance algorithm, and we have
selected the max. min. with contractions since it is the one which has given
us the best results. It’s important that the algorithm complies the triangle
inequality, and our tests shows us that usually it does, but not always.

As we can see comparing this shortcut with the original algorithm, the
quality of it has lowered a little bit. This is due the fact that the algorithm
doesn’t comply completely the triangle inequality, so we have to decide if
it is worth getting more false positives for a reduction of the running time.
As we will see later, the decrease of the running time is not very noticeable
for the threshold we are interested, and the increase of false positives can
be very negative since the filtering of them is very time consuming. With
this algorithm we will display an extra table for the running times, as this
value is dependent of the threshold selected, in which we can see that the
improvement in time is not very appreciable with thresholds 0.3 and 0.2, we
have reduced the time from 0.015 to 0.013 an 0.012, but is more appreciable
at threshold 0.1 where it has been reduced to 0.003. Unfortunately this
threshold is too low, and we are not interested in it since the results with it
are too bad.

64

4.2.11 Conclusions

To finish this chapter, we will display a table that shows a summary with
some measures of all the algorithms we have worked on. We will select by
hand for each of them which seems to be the best threshold, and their mea-
sures associated (true positives percent, false positives percent and average
running time)

Algorithm threshold tpp fpp time
NFact factor of sums 0.25 78.0374 76.7733 0.0311
NFact sum of factors 0.2 55.1402 72.3653 0.0316
NM factor of sums 0.025 65.4206 0.7092 0.0156
NM sum of factors 0.2 89.7196 83.0837 0.0155
NM max. min. 0.4 90.6542 74.4401 0.0155
NM max. min. with contr. 0.3 92.5234 45.1524 0.0155
Initials shortcut 2 0.3 89.2523 38.3871 0.00723
Metric trees 0.3 89.252 44.314 0.013941490

Given this statistics, we can now fairly well say that the best two algo-
rithm of the list for our purposes are the NM max. min. with contractions,
and the initials shortcut (using the above algorithm). The decision between
the two algorithms arises a commitment between true positives and false
positives. In other words, do we prefer to get less good results and filter
less bad results or get more results at the cost of manually filtering more
bad results? Assuming that we want to get the maximum number of good
results, we would select the MN max. min. algorithm with contractions, and
without the initials shortcut, and since we know beforehand the size of our
dataset, we can now estimate the total running time of the operation, the
number of false positives that we will have to filter by hand, and the number
of true positives we will be missing.

Our dataset is formed with names of directors of each country as is shown
in Table 4.27. And we must compare every name with every other in another
country. That gives us a total of 10,232,053,059 comparisons, a running time
of 44 hours, we will get 69,920 real positives but will be missing 5,650 real
positives, and we will still have to filter 57.560 of real negatives.

On the other hand, if we select the the same algorithm with the initials
shortcut, the running time would be reduced to 20 hours, we would get
67,256 real positives and be missing 8,312, and we would have to manually
filter 41,902 real negatives.

65

country number of names
KR 64
AU 277
PL 1005
BE 1172
BG 1216
CA 1427
IL 1765
CH 2372
FR 3022
AR 3066
BR 3148
SE 3185
RO 3332
IT 4143
MX 4477
IN 4556
DK 6629
DE 8639
US 13517
NL 15740
UK 18802
ES 55024

Figure 4.27: Table of number of names of directors per country

66

4.3 Firm Name matching algorithms

We are interested in joining two databases. The venture capital database,
and the freely available NBER patent database [36]. In this two databases
there exist a common entity, that is the firm. The difficulty to do the join is
that the identifiers of the firms are different in the two databases and cannot
be exchanged. In order to link them, since we don’t have a clear identifier, we
must use the firm name as a fuzzy identifier, and do name matching again.

In order to be able to correctly match Firm names, we cannot use the
same strategies used for person names. Firm names are different from person
names in many ways: they have not a typical number of words like in person
names (which usually have two or three). They are usually accompanied by
the words ’inc’, ’incorporated’, ’corporation’, ’ltd’, and so on. The omissions
of words are not common, and neither are their contractions into initials.
This is why we have to redesign the name matching algorithm in order to
correctly match Firm names.

4.3.1 Name clean-up

As in the Person name matching, we need to do a clean-up process of the
names before we compare them. To deal properly with Firm names, we
propose to do the following steps to clean the names.

• Convert the name to lower-case

• Convert characters with accents to his non-accent equivalents

• Replace separator characters into spaces [. / , -]

• Remove text enclosed in parentheses

• Remove all not alpha or number characters or spaces, i.e. the 26 char-
acters of the english alphabet, the ten numbers and the space

• Do the string substitutions explained below, that standardizes some
typical words in firm names

• Remove useless spaces (removing leading and ending spaces, and re-
placing a repetition of two or more spaces into one)

67

Substitutions

In firms names we encounter that there exists some words that are form-
ing part of the name, but have a special meaning, such as ’incorporated’,
’company’, ’society’, and so on. Usually this words have synonyms, and for
that reason a firm can be spelled differently using that synonyms. To over-
come this problem, we decide to replace every instance of this words by a
standardized form of the word. For instance, we could replace ’company’,
’companies’, ’compagnia’, ’companhia’ or ’compagnie’ by his standardized
form ’corp’. With this step we accomplish that two equal firm names differ-
ently spelled by using synonyms become more equal.

In order to find a good list of substitutions or replacements to do to
the names before applying the matching algorithm, we have reused a similar
existent work made public on the net. It’s the Patent Name-Matching Project
[29]. The authors of the project had made publicly available the programs
that make the clean-up process of the firm names of his database for later
applying the matching algorithm (as we do), but in his case the matching
algorithm is a simple string comparison. We have only used the piece of
code that does the substitutions explained before as the rest of the clean-up
process was very similar to ours. It consists in 834 replacements, and as an
example, we will show some of them in Figure 4.28.

4.3.2 Algorithms and Benchmarks

We can take advantage of all the algorithms created for the person name
matching for this particular case. It is difficult to say beforehand which
algorithm will work best for Firm names, so we have tested them all to
empirically see the performance of them. To do the evaluation, we need a
checked sample, like we did with the person name matching evaluation of
algorithms. We have selected the first 1000 firms of the patents database,
and the full venture capital db, we have done the matching with different
algorithms, and manually selected the good matches. We have found 35
matches, we show some of them in Figure 4.29. With this checked dataset,
we can evaluate now for each algorithm his performance, by calculating the
number of false positives and false negatives it is giving in the testing dataset.

In this particular case of names (firm names), we will automatically dis-
card the NFact algorithms. The reason is that we can have names with a lot
of words, so an algorithm that runs in N ! time is not a good option.

The first three algorithms that we have tested, are borrowed from the
person name matching algorithms, and they are: NM factor of sums, NM
sum of factors, and NM maximum minimum.

68

search replace
PUBLIC LIMITED PLC
LTD CO CO LTD
CIA CO
CIE CO
STE ANONYME SA
ACADEMY ACAD
AGRICULTURE AGRIC
APPLICATION APPL
CENTER CENT
CLOSE CORPORATION CC
CHEMISTRY CHEM
COMMERCIAL COMML
CONSOLIDATED CONSOL
CONSTRUCCION CONSTR
CONSTRUCTIONS CONSTR
CORPORATE CORP
EQUIPEMENTS EQUIP
ENGINEERING ENG
DEVELOPMENTS DEV
EUROPEAN EURO
EXPLOITATION EXPL
FABRICATIONS FAB
FOUNDATION FOUND
INDUSTRIALS IND
INSTITUTE INST
LABORATOIRES LAB
LIMITED LTD
MANUFACTURE MFR
PHARMACEUTICAL PHARM
ORGANISATION ORG
PRODUCTS PROD
SOCIETE ANONYME SA
SCIENTIFIC SCI

Figure 4.28: Sample replacements from the Patent Name-Matching Project

69

vc db patent db
EMC CORPORATION EMC Corporation
Emergency Management Equipment EMERGENCY MANAGEMENT PR..
Emergent Game Technologies (FKA: ...) EMERGENT TECHNOLOGIES CO..
Empco Industries Inc. EMPCO (CANADA) LTD.
Emulex Corporation EMULEX CORPORATION
Encore Computer Corporation ENCORE COMPUTER CORP...
EMS Development Corporation EMS DEVELOPMENT CORP...
Endius, Inc. (FKA: Aust & Taylor ...) ENDIUS INCORPORATED
Endocare, Inc. ENDOCARE AG
Enable Semiconductor, Inc. ENABLE SEMICONDUCTOR, INC.
McDonald & Co. A. Y. MCDONALD MFG. CO.
China Development Corporation CHINA DEVELOPMENT CORP.

Figure 4.29: Manually found matches

NM factor of sums weighted

We have also created a new algorithm, that is a modification of the factor of
sums. It is essentially the same algorithm, but in this case we have in account
that not all words are equally frequent, and since two common words are more
likely to match, they count less in the final punctuation. For instance, if we
are matching ’colomer technology’ against ’belinky technology’, the distance
between the words technology-technology will have less importance in the
final punctuation that the words colomer-belinky, since they are less common
words. The equations to calculate this new punctuation are as follows.

(4.11) distance =

∑

i levenshteinDistance(words1[i], words2[assign[i]])

freq(words1[i]) ∗ freq(words2[assign[i]])

(4.12) max =

∑

i max(len(words[i]), len(words[assign[i]]))

freq(words1[i]) ∗ freq(words2[assign[i]])

(4.13) normalizedDistance = nameDistance/max

Where the function freq returns the number of times the word appear in
the two databases. This way, the contribution to the total punctuation is
inversely proportional to the frequency of each word.

70

alg threshold tp p
factorofsums 0.00 28 79
sumoffactors 0.00 28 79
maxmin 0.00 28 79
factorsumsweighted 0.00 20 47

Figure 4.30: algorithm benchmark

In figure 4.30 we can see the results obtained for each of them. We are
displaying for each algorithm, his name, the optimum threshold selected, the
number of true positives, and the number of positives. The number of real
positives is always 35.

The reason why the NM maximum minimum have not given the good
results it had with the person names might be the high range of number
of words the firms names have (from 2 to 6 or more), while person names
have almost always from 2 to 3. Remembering the algorithms, we see that
NM maximum minimum only uses the worst match to get the rating, so if
we have more matches (big number of words composing the name), is more
provable to get a bad rating, even if it is a good match, which means that
we will get a lot of false negatives.

The weighted version of Factor of sums hasn’t given good results either.
At the beginning we though that maybe the difference of frequencies was too
high between words, so we tested replacing the frequency by his logarithm,
but this hasn’t given good results either, and we have not a clear explanation
for that.

Two ways version

Although the two first algorithms worked fairly well, we saw an important
flaw that was giving us a lot of false positives as the displayed below.

INDUSTRIA COLUMBIANA DE ELECTRONICOS Y ELECTRODOMESTICOS,

INCELT S.A. OF CARRERA <-> ELT Corporation

S&A CORPORATION <-> Embrasa SA Alimentacao e Servicos

EMC ENGINEERING & MARKETING CONSULTING A/S <-> EMC Corporation

EURO EMC SERVICE DR. HANSEN GMBH <-> EMC Corporation

SERVICES, INC. <-> Emergency Medical Services (AKA: EmCare ..)

SERVICES, INC. <-> Encompass Services Corporation (FKA: Buil..)

The problem resides in the huge difference of number of words of the two
names. I we think in how the algorithm we realize that is normal that this

71

alg threshold tp p
factorofsums 0,000 28 79
sumoffactors 0,000 28 79
maxmin 0.00 28 79
factorsumsweighted 0.00 20 47
factorsums2 0,022 23 24
sumoffactors2 0,000 20 20

Figure 4.31: algorithm benchmark

matches are given such good ratings. For instance, matching ”SERVICES,
INC.” against ”Emergency Medical Services (AKA: EmCare Holdings, Inc.)”,
we first pick the name with less words, the first one, find the best match with
the words composing the second name, which has always a distance of 0, so
the total match is 0.

To overcome this problem, we have decided to do the match in the two
directions (instead of doing it only from the name with less words to the
other), and then the total rating is calculated as the arithmetic mean of
the two ratings. This way, as the opposite matching will certainly have bad
results for this false positives, the total rating will also be bad.

We display in figure 4.31 the benchmark for this two new algorithms: NM
factor of sums (2 ways), and NM sum of factors (2 ways).

As we can see, the accuracy of both of them has experienced a notable
improvement, being the NM factor of sums (2 ways) the most accurate. We
are interested in continue improving this algorithm, so a good idea is to
display the false negatives in order to understand why are they not selected,
and try to fix it. We display the false negatives of this algorithm in figure
4.32.

Keyword removal

As we can see, the main problem here is that the distance of the names is
increased due to difference with words like ’limited’, ’incorporated’, ’corpo-
rated’ or ’S.A.’. Since this words doesn’t mean much in our case, we can
safely remove them and surely our algorithm will give much better results
since this false negatives will be more equal. We propose to do the removals
of the words ’s.a.’, ’corp’, ’inc’, and ’ltd’. Remember that these are the stan-
dardized forms, so by doing the removals of this words, we are also removing
all his variants.

In figure 4.33 we can see the improvement made by this algorithm.

72

distance firm1 firm2
0,042 ABEKAS VIDEO SYSTEMS LIMITED Abekas Video Systems, Inc.
0,033 ACME-DIVAC INDUSTRIES INC. Acme Industries, Inc.
0,155 ABT, INC. ABT Corporation
0,050 ACCOM Accom, Inc.
0,071 ACCURAY CORPORATION Accuray, Inc.
0,083 ACCU-TECH INCORPORATED Accu-Tech Corporation
0,056 ACE INDUSTRIES, INCORPORATED Ace Industries
0,050 ACOS VILLARES S.A. Acos Villares
0,057 ACR ELECTRONICS CORPORATION ACR Electronics Inc.
0,028 A. BRISTOL CORPORATION Bristol Corporation

Figure 4.32: false positives for NM factor of sums, 2 ways

alg threshold tp p
factorofsums 0,000 28 79
sumoffactors 0,000 28 79
maxmin 0.00 28 79
factorsumsweighted 0.00 20 47
factorsums2 0,022 23 24
sumoffactors2 0,000 20 20
factorsums2removes 0,022 33 37

Figure 4.33: algorithm benchmark

73

We have now very good results, and we are not able to continue improving
the algorithm by make it select the false negatives and discard the false
positives without compromising the true positives and negatives. The total
percentage of true positives over real positives is 33 ∗ 100/34 = 97.1% wich
means that we will get the 97% of real positives with this algorithm, only
discarting erroniously less that the 3%, and the percentage of true positives
over the number of positives is 33 ∗ 100/37 = 89.2% that means that the
89% of the positives will be real positives, so we only will have to manually
discard the 11% of them.

We have done the full matching with this final version with the complete
two databases, which have a total of 32292 (vc database) and 175115 (patents
db) firm names, which gives a total of 5,654,813,580 pairs. After a bit more
of two days of processing in a intel core duo 1.66Ghz, we have got 11,021
positives, which we have to filter in some other ways (manually).

5813 of the positives have a distance of 0, which means that it’s a perfect
match and doesn’t need to be manually checked. This represents the 3.3% of
the patent db (wich holds the 4.3% of the patents), and the 18.0% of the vc
db. In the other hand, we have 5208 pairs of firms which has given a distance
between 0 and 0.03, so they must be checked manually. This represents the
2.97% of the patent db (wich holds 2.3% of the patents), and the 16.1% of
the vc db.

74

Chapter 5

The Pipeline

5.1 Introduction

In this chapter we will introduce what we have called, the pipeline. It consists
in an architecture to manipulate the datasets, process, analyze and extract
useful information in a formatted version suited for end users. It’s written
in the C++ programming language. His main program enables the user to
interact with almost all the features of the library through a command line
interface. The general syntax for it is

pipeline command [arguments]

where the arguments are command dependent. The output of the pro-
gram is usually given through the standard output formatted as a convenient
xml, ready to be easily parsed and transformed into reports in other formats
such as html. The core of the library has been thankfully contributed by
Josep M. Pujol, and we used part of his PhD [12] work as the base of our
tool.

5.2 The graph class

The core of the library is the graph object, which is the responsible for the
data representation of the graph. There exist two main approaches to the
data representation of a graph, the adjacency list and the adjacency matrix.

5.2.1 Adjacency list

A concise way to represent a graph in a computer memory might be trough
an adjacency list. Let’s remember what exactly is a graph: A graph or

75

undirected graph G is an ordered pair G := (V, E) where V is a set, whose
elements are called vertex or nodes, and E is a set of pairs (unordered) of
distinct vertex, called edges or lines. So, if we know for each vertex with who
is he connected, we have then the graph totally described. We can identify
each vertex with a number (from 0 to N − 1, where N is the total number of
vertex). We can represent each node with a data structure of fixed length,
and have all of the vertex in an array of size N , where the position i of the
array is representing the vertex with id i.

The most basic information we must hold for a vertex is with who is he
connected. We can represent this with another array of integers with all the
ids of the vertex which is he connected, or any other data structure that
permits us to represent a list of integers (linked list, set, etc). We can also
reserve space to store other information in the edges such as his weight.

The main advantage of this representation is his low memory cost, that
is almost proportional to the number of edges. It is very common to work
with sparse graphs, that are graphs with only a few edges, in such case, the
adjacency list it might be a good option. It has also his drawbacks, that are
mainly a higher cost for some operations (for instance, to know if the edge i,
j exist, we must do a search in a list, which has a cost of N in worst case),
and the requirement of managing dynamic structures to represent the lists.

In figure 5.2 we can see a example representation of the graph shown in
figure 5.1. It uses a linked list to represent the edges.

Figure 5.1: example graph

5.2.2 Adjacency matrix

Another simpler approach is the adjacency matrix. In this case we represent
the graph with a data structure of fixed size, removing the need of managing
dynamic data structures. The data structure is a two dimensional matrix of
booleans of size [N, N]. Then, the element (i, j) stores a 1 iff the edge (i, j)
exist, and 0 otherwise. We can also can have integers instead of booleans to

76

Figure 5.2: Adjacency list representation example

represent the weights of the edges, and we can even have more complex data
structures (always of fixed length), to represent the edges.

The main advantage of this data structure is it’s simplicity, and the low
cost of some operations (e.g. check if an edge exist). Probably his major
drawback is his high memory cost in memory (N2), a cost that is sometimes
unnecessary to represent sparse graphs.

In figure 5.3 is shown a sample adjacency matrix for the graph shown in
figure graph

5.2.3 Our implementation

Since we are almost always working with sparse graphs, we have decided to
implement an adjacency list, representing the list of adjacencies with vectors.
We have available operations to add and remove edges, and again we had
different alternatives to implement them. To do the removal of edges, we
have decided to mark the edge as removed. The advantage of this decision is
that obviously it has constant running time and the drawback is that every
time we iterate all the edges, we have to filter the removed edges, and also it
wastes a bit of memory. Another option could be to move all the edges at his
right one position left, which has N cost at worst case. The adding of edges
is done by searching a removed or empty edge to use his space, if no one is
found in all the vector, more memory is allocated (the double than the old
vector), and the data copied to the new one, and then the old one is freed.

77

Figure 5.3: Adjacency matrix representation example

On the other hand, we have no implemented the feature of adding and
removing nodes since we didn’t need it. The number of nodes are specified
in the constructor of the class, and it never changes.

Here we can see the classes and his relevant attributes to better under-
stand the data structure.

class graph {

public:

Node* nodes;

int nodeCount;

int edgeCount;

}

The graph class contains an array of nodes, the node count and edge
count. We must note that the edgeCount value is duplicated for an undirected
graph.

class Node: public attributeElement

{

78

public:

int idNode;

int inK;

int outK;

int K;

edge* edges;

};

The class extends the class attributeElement that will later explain. Node
contains the id (a bit redundant because is the same as his position of the
vector of the class graph). inK, outK, and K are respectively, the in-degree
(for directed graphs only, otherwise is the same as K), the out-degree (only
for directed graphs), and the degree (for undirected graphs). And finally the
vector of edges.

class edge: public attributeElement

{

public:

int idNode;

double weight;

};

This class also extends the class attributeElement. It has the idNode (the
id to which is connected the node that owns the edge), and the weight of
it. If idNode contains the value REMOVED means that the edge has been
removed.

class attributeElement {

map<const char*, int, ltstr> * intMap;

map<const char*, char *, ltstr> * strMap;

map<const char*, double, ltstr> * doubleMap;

int getIntProperty(char * key);

void setIntProperty(char * key, int value);

char* getStrProperty(char * key);

void setStrProperty(char * key, char * value);

double getDoubleProperty(char * key);

void setDoubleProperty(char * key, double value);

}

79

The class attributeElement is the superclass of the graph and edge classes.
It contains three hash maps (one for each type) useful to store any arbitrary
attribute under a string key. The class supports int, double and string at-
tributes, and has convenient methods to store and retrieve the attributes. As
it is the parent class of graph and edge classes, both of them supports the
functionality of storing arbitrary attributes.

5.3 Input and Oputput

The input of the tool is always a network in the pajek [6] file format. In fact,
we are using only a subset of the specification of the format, since there are
features in which we are not interested. Basically, the file contains the list
of nodes with his identifiers, and the list of edges with his weights. A very
simple pajek file is shown below as an example.

*Vertices 3

1 "N1"

2 "N2"

3 "N3"

*Edges 3

1 2 1

1 3 2

2 3 1

This sample is a undirected network, the format also supports directed
networks through the keyword Arcs instead of Edges. The labels of the nodes
are stored as an string attribute under the name label.

We have implemented functions to load and save graphs, and the signa-
ture of them are the following.

graph* loadBipartiteFromPajek(char* filename);

graph* loadFromPajek(char* filename);

void saveToPajek(graph* g, char * filename);

The function loadBipartiteFromPajek loads a specific type of graphs,
called bipartite graphs in which there are two types of nodes, and all the
edges connect nodes of different types. The edge list of the pajek file for this
type of graphs has always the all the nodes of one type in one side, and the
other type in the other side.

80

5.4 Basic Features

The most basic methods to work with the graph are the following

void print();

bool addEdge(int id1, int id2, double weight);

bool modifyEdge(int id1, int id2, double weight);

bool removeEdge(int id1, int id2);

edge* getEdge(int id1, int id2);

simpleNode* getNode(int idNode);

int* getNeighbours(int id, int* size);

graph** getConnectedComponents(int * size);

The names are pretty self-explaining, the first method displays on the
screen the number of nodes and the adjacency list. The next three adds
and edge with the specified weight, updates or removes it. The getEdge
and getNode method returns a pointer to an edge or simpleNode struct.
getNeighbors returns a vector of size size with all the neighbors of the node
with id id. And finally, getConnectedComponents, returns a vector if size
size with pointers to the newly created graphs representing the connected
components. It returns the giant component at the first position of the
vector.

5.5 Bipartite networks

A two mode or bipartite network is a network where not all the nodes are
equal, there are two types or nodes, and the nodes of one type can only has
neighbors of the other type. As an example, we can think on the network
of actors, we could represent that networks with a two mode graph in which
one type of nodes are the actors, and the other the movies. Then, an edge
exists between an actor and a movie if that actor has worked in that movie.
Usually one set of nodes are called the actors and the other ones the teams
of actors.

The graph also supports two mode graphs. In the pajek file the nodes
of one type are always in the left of the adjacency list, and the others on
the right. The loading of this kind of graphs must be done with an specific
function, named loadBipartiteFromPajek. It loads the graph as in the method
for loading one mode graphs, but in this case an extra integer attribute named
type stores a one for one type of nodes, and a two for the others.

An interesting operation of the bipartite graphs is the projection, that
transforms the two-mode graph into a one-mode. There can be two different

81

projections, one for each type of nodes. The new graph contains all the
nodes of the type A, and an edge exists between two nodes if that nodes
share a neighbor in the bipartite graph. Thinking a again in the example of
the actors, the one mode projection for the actors would be a graph with all
the actors, and two actors would be linked if they have worked in any movie
together. Usually, if two actors work together in more than one movie, this
is translated as a weight in the projection (the weight being the number of
movies they appear together). The other possible projection would be the
movies projections, in which two movies would be linked together if they
have the same actor working in them.

The class disposes also a method to do the one mode projections of the
bipartite. His signature is the following.

graph* getOneModeProjection(int type);

it returns a pointer to a newly created graph with the projection. The
type parameter (one or two) specifies which one of the two projections must
be returned.

5.6 Community structure

5.6.1 Girvan Newman

Social network researchers are usually very interested in the community struc-
ture of the networks. In a network with community structure, the vertex of
the networks are often found to cluster into groups with high density of
within-groups edges and lower density of between-group edges. To detect
such structure, a lot of algorithms has been proposed. The first notable one
was a method proposed by Girvan and Newman [7] [8], and it consists in
the iterative removal of edges with high betweenness scores. The principle
disadvantage of this algorithm is the high computational cost of it. In its
simplest and fastest form it runs in worst-case time O(m2n) on a network
with m edges and n vertex, or O(n3) on a sparse graph. This makes this
algorithm an impractical option for networks with more than a few thousand
nodes.

5.6.2 Fast Algorithm

A more efficient approach was proposed by the same Newman in [9]. This new
algorithm is based in the idea of modularity. Given any network, the Girvan
and Newman community structure algorithm always produces some division

82

of the vertex into communities, regardless of whether the network has any
natural such division. To test whether a particular division is meaningful a
quality function is defined, called “modularity” Q as follows [8]. Let eij be
the fraction of edges in the network that connect vertex in group i to those
in group j, and let ai =

∑

j eij
1. Then

(5.1) Q =
∑

i

(eii − a2
i)

is the fraction of edges that fall within communities, minus the expected
value of the same quantity if edges fall at random without regard for the com-
munity structure. If a particular division gives no more within-community
edges than would be expected by random chance we will get Q = 0 . Values
other than 0 indicate deviations from randomness, and in practice values
greater than about 0.3 appear to indicate significant community structure.

The scheme of the algorithm is based on a standard greedy optimization
algorithm. It starts with a state in which each vertex is the sole member of
one of n communities, then, the communities are repeatedly joined together
in pairs, choosing at each step the join that results in the greatest increase
(or smallest decrease) in Q. Finally, we select the partition that has given
the greatest Q as the optimal partition. It can be proven that the cost of
this algorithm is O((m + n)n), or O(n2) on a sparse graph.

int * partitionFastAlgorithm(int * nPartitions,

double * modularity);

Our class disposes of different methods for finding a partition with a good
modularity, having all of them a similar signature.

The methods doesn’t have any input parameter (only the graph object
itself is used), and returns the best modularity found, the number of clus-
ters composing the best partition found, and finally an array in which the
i element of the array contains the identifier of the cluster it belongs to in
partition found with highest modularity.

The implementation itself of the Fast Algorithm, was kindly contributed
by Josep M. Pujol and integrated into our library. Since the data structure
used in both implementations of the algorithms, and the one used in our

1As discussed in [8], each edge should contribute only to eij once, either above or
below the diagonal, but not both. Alternatively, and more elegantly, one can split the
contribution of each edge half-and-half between eij and eji, except for those edges that
join a group to itself, whose contribution belongs entirely to the single diagonal element
eii for the group in question.

83

library where similar but incompatible, we decided to write a converter be-
tween representations to use the contributed code without changing it (and
possibly damaging it). The process is completely transparent to the user,
and the converter is automatically called when needed.

5.6.3 PBD

The PBD algorithm [11], created by Josep M. Pujol, Javier Bejar, and Jordi
Delgado is based in the Newman’s Fast Algorithm, but outperforms it both
in running time and accuracy. It’s a combination of spectral analysis and
modularity optimization, the spectral analysis is used to find a good initial
state for the later modularity optimization, that is essentially the same as
the Newman’s Fast Algorithm.

The initial state is created using the concept of random walks, a random
walker starts at a given node, and since there is a community structure in the
network, the walker will probably be stuck most the time in a community.
With this method, we can find a premature partition, that will later im-
prove with a hill climbing algorithm that does an agglomerative hierarchical
clustering as it is done with the Fast Algorithm.

This better initial partition that simply a group per node, gives us better
results both in running time (there are less initial groups, so we need less
time to merge them), and accuracy.

int * partitionPDB(int * nPartitions, double * modularity);

The implementation for this algorithm was also contributed by Josep M.
Pujol (the principal author of the PDB algorithm), and we added the method
to the graph class with a very similar strategy as with the Fast algorithm.

5.6.4 Extremal Optimization

Another interesting approach is the one proposed by Duch and Arenas [10],
which is a divisive algorithm that optimizes the modularity Q using an heuris-
tic search based on the Extremal Optimization. The process is done as fol-
lows: first, we split the nodes of the whole graph into two random partitions
with the same number of nodes. At each step, the system self-organizes by
moving the node with the lower fitness (extremal) from one partition to an-
other (the new fitness of many nodes has to be recalculated). The process is
stopped when an optimal state with maximum value of Q is reached. After
that, we delete all the links between both partitions and proceed recursively
with every resultant connected component. The process finishes when the
modularity Q could not be improved.

84

The computational cost involved in the whole process is O(N2 ln(N)2),
but with appropriate data structures it can be improved up to O(N2 ln(N)).

int * partitionEO(int * nPartitions, double * modularity);

The authors of the algorithm thankfully gave us a copy of the binaries of
the program they developed. Since we couldn’t modify the program, we had
to implement the method by invoking the program and parsing the results.
Again, the process is completely automatic and transparent to the user.

5.6.5 Hill climbing

The hill climbing algorithm belongs to the local search family of algorithms, it
is really simple to understand and to code it, making it a common first choice,
but it has some problems and usually more advanced algorithms would give
better results. The main idea is to have defined an state, and a function that
gives a value associated to that state (we call it the heuristic function), and
the problem is to find a state which optimizes that function.

The strategy is as follows, an initial state is given, the algorithm makes
then small changes to the state (by invoking the operations defined in the
algorithm) improving it a little bit in every iteration. The algorithm finishes
when no improvements can be made.

Probably, the main disadvantage of this strategy is the local maxima
problem, that is, when the algorithm finishes we can only be sure to have
found a local maximum (a state that has a greater value associated than all
his neighbors), but this local maximum can be far away from the optimal
solution.

In our implementation, we have selected the partition as the state, and
the moving a node to another partition, split

5.6.6 Simulated annealing

Simulated annealing [21] is a generic probabilistic meta-algorithm for the
global optimization problem, namely locating a good approximation to the
global optimum of a given function in a large search space.

The name and inspiration come from annealing in metallurgy, a technique
involving heating and controlled cooling of a material to increase the size of
its crystals and reduce their defects. The heat causes the atoms to become
unstuck from their initial positions (a local minimum of the internal energy)
and wander randomly through states of higher energy; the slow cooling gives
them more chances of finding configurations with lower internal energy than
the initial one.

85

By analogy with this physical process, each step of the Simulated an-
nealing algorithm replaces the current solution by a random ”nearby” solu-
tion, chosen with a probability that depends on the difference between the
corresponding function values and on a global parameter T (called the tem-
perature), that is gradually decreased during the process. The dependency
is such that the current solution changes almost randomly when T is large,
but increasingly ”downhill” as T goes to zero. The allowance for ”uphill”
moves saves the method from becoming stuck at local minimawhich are the
bane of greedier methods like in the Hill Climbing algorithm. Another good
advantage is that there is no need to give to the algorithm a good initial
state, as it doesn’t really matter which initial state is chosen.

The following pseudo-code implements the simulated annealing heuristic.
It starts with state s0 and his corresponding energy is computed. Then, at
each step of the iteration a random neighbor is chosen (a new state reachable
through a single operation to the actual state), his energy is computed, and
probabilistically is decided if we should move to the new state. The function
which makes this decision P needs as parameters the old energy, the new
one, and the temperature k. In the original formulation of the method by
Kirkpatrick et. al [21], the transition probability P (e, e′, T) was defined as
1 if e′ < e (i.e., downhill moves were always performed); otherwise, the
probability would be: exp((e − e′)/T).

s := s0; e := E(s)

k := 0

while k < kmax

sn := neighbour(s)

en := E(sn)

if random() < P(e, en, temp(k/kmax)) then

s := sn; e := en

k := k + 1

return s

Not always when the loop finishes the resulting state is the best seen in all
the other iterations, so it could be a good idea to keep track of the best state
found, the drawback to this is that every time a better state is seen, it must
be copied making the algorithm a bit slower and more memory expensive,
but usually gives better results.

As we can see, actually Simulated annealing is not an algorithm but a
family of algorithms, and it must be defined what a sate is, which operations
are available, and the function we want to optimize in order to have the
algorithm fully described.

86

Simulated annealing can be used to find good partitions. The first pub-
lication it has appeared in this issue is the paper of Gimera et. al [22], and
seems to be a good strategy. The state is the partition of the graph, the
operations are N2 moves of a node to another partition, and N joins of two
partitions, or splits of one into two (moving a node from that partition to a
newly created one).

int * partitionSimulatedAnnealing(

int * size,

double * modularity);

int * partitionSimulatedAnnealing(

int * size,

double * modularity,

double initialTemperature,

double factor);

The simulated annealing method has been written from scratch. The
extra parameters are the initial temperature k, and the factor, that is the
number by which the temperature is multiplied at each iteration. The func-
tion that has not this two parameters has them with fixed values, which we
have selected to be 10 for the temperature, and 0.2 for the factor.

Our condition to leave the loop is that the state has not been improved
in 50 iterations in a row.

5.6.7 Community structure in bipartite networks

The concept of modularity has been very successful in the detection of com-
munity structure of complex networks. To detect the community structure in
a bipartite network, many different approaches have been used, and Freeman
[23] has compiled a collection of 21 algorithms published for that purpose.
The problem is that none of them satisfies the two following conditions: A
good algorithm to detect community structure in bipartite networks must
work in all kind of networks not only to a particular type of network and
fail in the others (e.g. large networks, dense/sparse networks). The second
condition is that the algorithm must be clearly different from the graph par-
titioning problem (in which the number of modules to be found is known).
The problem to resolve is the module-identification problem, and the main
difference is that we don’t know beforehand the number of modules to be
found. This second condition excludes all algorithms based, for example, on
hierarchical clustering or principal clustering analysis. For instance, given a
dendrogram generated using hierarchical clustering, one still needs to decide
where to ’cut it’ in order to obtain the relevant modules.

87

In the spirit of the most successful method for module identification in
unipartite networks [24], a new modularity function is defined for bipartite
networks, that upon optimization yields to the best possible partition of the
actors into modules. Considering the probability that a given actor i belongs
to a certain team a comprised of ma actors, it is given by

(5.2) ma

ti
∑

k tk
,

where ti is the total number of modules to which node i belongs. The prob-
ability that two nodes i and j belong to the team is

(5.3) ma(ma − 1)
titj

(
∑

k tk)
2 .

Therefore, the average number of teams in which i and j are expected to be
together is

(5.4)

∑

a ma(ma − 1)

(
∑

a ma)
2 titj ,

where the equality
∑

a ma =
∑

k tk has been used. Note that
∑

a ma(ma−1)
and (

∑

a ma)
2 are global network properties, which do not depend on the

pair of nodes considered.
Equation (5.4) enables us to define the bipartite modularity as the cumu-

lative deviation, within modules, from the random expectation

(5.5) MB(P) = 2
∑

s

[

∑

i>j∈s cij
∑

a ma(ma − 1)
−

∑

i>j∈s titj

(
∑

a ma)
2

]

,

where cij is the actual number of teams in which i and j are together. For
convenience, the modularity is normalized to be MB < 1, so that MB → 1
when: (i) all actors in each team belong to a single module (

∑

s

∑

i>j∈s cij =
∑

a ma(ma − 1)/2), and (ii) the random expectation for pairs of nodes being
in the same team is small (

∑

s

∑

i>j∈s titj ≪ (
∑

a ma)
2).

The most accurate way to optimize this function is through Simulated
Annealing. Different methods have been suggested including greedy search
[25], extremal optimization [10], and spectral methods [26] [27]. In general
it exists a trade-off between efficiency and accuracy, being the simulated
annealing method the most accurate, but too slow to deal with some big
networks.

In our implementation we have used the same operations as in the sim-
ulated annealing implemented to optimize the unipartite modularity. That

88

is, the state is the partition of the graph, the operations are N2 moves of a
node to another partition, and N joins of two partitions, or splits of one into
two (moving a node from that partition to a newly created one).

int * partitionSimulatedAnnealingBipartite(

int * size,

double * modularity);

int * partitionSimulatedAnnealingBipartite(

int * size,

double * modularity,

double initialTemperature,

double factor);

The extra parameters are the initial temperature k, and the factor, that
is the number by which the temperature is multiplied at each iteration. The
function that has not this two parameters has them with fixed values, which
we have selected to be 10 for the temperature, and 0.2 for the factor.

Our condition to leave the loop is that the state has not been improved
in 50 iterations in a row.

5.7 Clustering coefficient

The clustering coefficient is a measure that captures the notion of overlap or
cohesiveness [14]. it measures the probability that two nodes that are linked
together, have a neighbor in common. In other words, it is the probability
that any two neighbors of any node are linked together. This may be done
using two slightly different notions, both called clustering coefficient. The
first one computes the probability, for any given node, that two neighbors of
this node are linked together. Obviously, it’s only defined for nodes with a
degree greater or equal to two.

cc•(v) =
|EN(v)|

|N(v)|(|N(v)|−1)
2

=
2|EN(v)|

do(v)(do(v) − 1)

where EN(v) = E ∩ (N(v)×N(v)) is the set of links between neighbors of
v. In other words, cc•(v) is the probability that two neighbors of v are linked
together. Notice that it is nothing but the density of the neighborhood of v,
and in this sense it captures the local density. The clustering coefficient of
the graph itself is the average of this value for all the nodes:

cc•(G) =

∑

v∈V cc•(v)

|{v ∈ V, do(v) ≥ 2}|
.

89

One may define directly another notion of clustering coefficient of G as a
whole as follows:

cc∨(G) =
3N∆

N∨

where N∆ denotes the number of triangles, i.e. sets of three nodes with
three links in G, and N∨ denotes the number of connected triples, i.e. sets
of three nodes with at least two links, in G. This notion of clustering is
slightly different from the previous one since it gives the probability, when
one chooses two links with one extremity in common, that the two other
extremities are linked together.

Both notions have their own drawbacks and advantages. The first one
has the advantage of giving a value for each node, which makes it possible
to observe the distribution of this value and the correlations between this
value and the degree, for instance. It however has the drawback of reducing
the role of high degree nodes. Moreover, importantly, these definitions cap-
ture slightly different notions, which may both be relevant depending on the
context.

The above definitions of clustering coefficient doesn’t take in account the
fact that some neighbors are more important than others. In order to solve
this incongruity, a clustering coefficient for weighted networks is defined [15].
The weighted clustering coefficient is defined as [13]

(5.6) cw(i) =
1

si(ki − 1)

∑

j,h

(wij + wih)

2
aijaihajh.

This quantity cw(i) counts for each triple formed in the neighborhood of
the vertex i the weight of the two participating edges of the vertex i. In
this way we are not just considering the number of closed triangles in the
neighborhood of a vertex but also their total relative weight with respect to
the vertex strength. The factor si(ki−1) is a normalization factor and ensures
that 0 ≤ cw

i ≤ 1. As we can see, this definition of clustering coefficient is a
generalization of the definition of cc.

5.7.1 Implementation

double getUcinetCC1();

double getUcinetCC2();

These are the methods we have implemented for the calculation of the
unweighted cc• and cc∨ clustering coefficients. In the calculation of cc•, it is

90

also stored in each node as an attribute under the name cc the value of cc•(i).
The implementation for this two algorithms is pretty straight-forward. The
description is as follows: For each node we iterate his adjacencies, and for
each adjacency iterate his adjacencies, then we must check if this two-level
adjacencies have the original node is as an adjacency of it. As we can see, the
algorithm must check constantly if two nodes are linked together. We first
developed the program using the representation we had for the graph, i.e.
an adjacency list, but very soon realized that it was an inconvenient data
structure for this algorithm since the operation to check if an edge exists
with this representation is very slow (O(N) in worst case). And indeed, the
algorithm had long running times for large networks.

double getFastUcinetCC1();

double getFastUcinetCC2();

Then, we decided that a matrix representation would be much more effi-
cient for this algorithm, so we rewrote it using a temporary matrix represen-
tation generated at the beginning of the algorithm and deleted at the end of
it. The running time was dramatically improved.

We must also note that the two clustering coefficients can be calculated
together nearly at the cost of calculating only one of them. So, in our im-
plementation, when the method of one of clustering coefficients is invoked, it
calculates both of them so when the other is later invoked, the result can be
cached.

This new implementation of cc• also stores as attributes the individual
calculations of cc•(i) for each node.

double getWeigthedCC();

This is the implementation of the weighted version of the measure. If all
the weights are 1, the returned value would be the same as the one returned
by getUcinetCC1 or getFastUcinetCC1. It stores the individual calculations
of each node under the name wcc.

void CCdistributionMeasures();

void CCdistribution(int bins);

void getCCDegreeCorrelation();

And finally, we have implemented some methods that shows some statis-
tics for the degree and the clustering coefficient. For instance, CCdistribu-
tionMeasures displays a list that shows the count, the mean and the standard
deviation of cc• for every degree. CCdistribution shows the distribution of

91

cc• with bins elements in the distribution. In other words, we split the range
of possible values of cc• into bins parts of equal length, and display how
many cc• falls into each part. And finally, getCCDegreeCorrelation displays
the mean cc• of the neighbors of every degree, i.e. for every degree, we visit
all the nodes with that degree, and for each of them we visit all his neighbors,
and then calculate the mean cc• of the neighbors. We must be careful to not
count a single node more than once, since it’s possible to reach a node from
different paths.

5.8 Centrality Measures

5.8.1 Degree Centrality

Probably, the most basic centrality measure is the degree centrality, and it
measures the number of links a node has.

The implementation is also straight-forward, and it’s simply calculated
at the loading of the graph, since our representation needs to know all the
time the degree of every node.

5.8.2 Strength

This is a generalization of the above measure for weighted networks. The
strength of a node is calculated by summing the weights of every edge that
falls on it. It’s equivalent to the degree centrality if all the weights are one.

5.8.3 Eigenvector Centrality

While the degree centrality limits to count the number of nodes a given
node is connected to, the eigenvector centrality does the same but taking in
account that not all nodes are equally important. In general, nodes connected
to important nodes, makes them important. If xi is the vertex centrality for
the node i, we can make xi being proportional to the average of centralities
of i’s neighbors with the following expression.

xi =
1

λ

n
∑

j=1

Aijxj

where λ is a constant. Defining the vector of centralities as x = (x1, x2, ...),
we can rewrite the above expression in terms of matrices.

λx = Ax

92

And hence, x is an eigenvector of the adjacency matrix, with eigenvalue
λ. Assuming we want all the centralities to be positive, it can be proved with
the Perron-Frobenius theorem that λ must be the largest eigenvalue of the
adjacency matrix, and x his eigenvector.

With these centrality, is important the number of contacts of a node, but
also the quality of this contacts, i.e. a node with less high quality contacts
can outrank another one with more low-quality contacts. This kind of cen-
trality measure is very useful in indexing web pages, as the google pagerank
algorithm is very similar to this.

Implementation

The method we have used to find the eigenvector and eigenvalue for the
adjacency matrix is the Power Iteration [20].the drawbacks if this method
are that is a bit slow, and it only finds the largest eigenvalue, but since it is
not very important the efficiency of the algorithm, we are only interested in
the largest eigenvalue, and the algorithm is quite simple to implement, is a
good option for us.

The idea of the algorithm is to choose an initial vector b (randomly or an
approximation), in our implementation, we have chosen a vector filled with
ones, and then we repeatedly multiply it with the matrix, thus calculation
Ab, A2, A3,.. In every iteration we normalize the vector by dividing by his
modulus, leaving his new modulus to be one. We iterate until the vector is
stabilized.

5.8.4 Betweenness Centrality

The betweenness centrality is defined for nodes and for edges. It’s also de-
fined for both weighted and unweighted networks (being the unweighted a
particular case of the weighted). It measures the degree an individual lies
between other individuals in the network. I’s calculated by counting the
number of shortest paths that pass through the node or edge. This value is
often normalized by dividing by the number of pairs of vertex not including
v, which is (n − 1)(n − 2).

We have used an existing implementation for our library. It’s a subproject
of the C++ Boost libraries [17], and it’s called The Boost Graph Library
(BGL) [19], and it uses the Brandes [16] algorithm for the calculation.

Since we where only interested in the definition of node betweenness for
weighted graphs, we have only this implementation in our library. We have
wrapped all the complexities of the boost library with a method of our graph
class called getBetweenness. Since the boost graph library had a different

93

data representation for the graphs, we had to do the conversion when the
method was invoked. It’s a process transparent to the user. After invok-
ing the method, it’s stored for every node as an attribute, the betweenness
centrality, and the normalized betweenness centrality.

5.9 Estimations

There exist a lot of well known distributions such as the Poisson, and the
properties of random graphs with such degree distributions have been widely
studied. When our random graph has an arbitrary degree distribution we
can estimate some properties by using a tool created by M.E.J.Newman et.
al. [28]. Among other measures, we can estimate with exact expressions
the position of the phase transition at which a giant component first forms,
the mean component size, the size of the giant component if there is one,
the mean number of vertex a certain distance away from a randomly chosen
vertex, and the average vertexvertex distance within a graph. Doing this
relatively simple calculations is equivalent to generating all possible graphs
with a specified number of nodes and degree distribution, calculating the
measures to all of them and calculating the mean. We are interested to add
this functionality to our library because we want to compare the measures
calculated to networks with the estimated ones given the degree distribution
of it. If the values obtained are clearly different it may be an indicator of some
additional social structure in the network that is not captured in the random
graph. In the mentioned paper there are discussed normal, directed and
bipartite graphs. In our implementation only normal and bipartite graphs
are supported though.

5.9.1 Normal graphs

The only measure that our implementation can estimate so far is the size of
the giant component and l which is the typical length of the shortest path
between two randomly chosen vertex of the graph. The reason for that is
because we add features to our library as needed, and we have been only
interested in this one.

We will reproduce here the relevant formulas to do the calculation, and
leave the demonstration in the reference [28].

Size of giant component

The approach is based on generating functions[44], the most fundamental of
which, for our purposes, is the generating function G0(x) for the probability

94

distribution of vertex degrees k. Suppose that we have a unipartite undi-
rected graph—an acquaintance network, for example—of N vertex, with N
large. We can define

(5.7) G0(x) =
∞

∑

k=0

pkx
k,

where pk is the probability that a randomly chosen vertex on the graph has
degree k. The distribution pk is assumed correctly normalized, so that

(5.8) G0(1) = 1.

(5.9) G1(x) =
G′

0(x)

G′
0(1)

=
1

z
G′

0(x),

(5.10) S = 1 − G0(u),

where u ≡ H1(1) is the smallest non-negative real solution of

(5.11) u = G1(u).

To find u we have used the newton method [45] to solve equation 5.11,
which is a method for finding approximations to the zeros (or roots) of a
real-valued function.

The description of the method is as follows, we begin with x0 = 0.001
(or any close approximation to the real root), then we iteratively calculate

xn+1 = xn − f(xn)
f ′(xn)

that will approximate more and more to the real root.
In our case, in order to find u, we can find a root for the equation y =

G1(u) − u

Average shortest path length

To find l we can use the following equations

(5.12) ℓ =
log[(N − 1)(z2 − z1) + z2

1] − log z2
1

log(z2/z1)
.

The average number zm of mth-nearest neighbors is

(5.13) zm =
G.

(m)

x.

∣

∣

∣

∣

x=1

= G′
1(1)G(m−1)′(1) = G′

1(1)zm−1.

95

Along with the initial condition z1 = z = G′
0(1), this then tells us that

(5.14) zm = [G′
1(1)]m−1G′

0(1) =

[

z2

z1

]m−1

z1.

We have encapsulated all this calculations in a class, that expects in the
constructor a degree distribution. Two public methods are available: getl
and sizeGiantComponent, both of them without parameters and returning a
double with the calculated value.

5.9.2 Bipartite graphs

In the paper are also discussed some estimations for bipartite graphs. Our
implementation supports the estimation for the clustering coefficient for both
parts of the bipartite graph. Like before, we will show here the relevant
equations to do this estimation.

Watts and Strogatz[?] have introduced the concept of clustering in social
networks, also sometimes called network transitivity. Clustering refers to the
increased propensity of pairs of people to be acquainted with one another
if they have another acquaintance in common. Watts and Strogatz defined
a clustering coefficient which measures the degree of clustering on a graph.
For our purposes, the definition of this coefficient is

(5.15) C =
3× number of triangles on the graph

number of connected triples of vertex
=

3N△

N3

.

(5.16)
1

C
− 1 =

(µ2 − µ1)(ν2 − ν1)
2

µ1ν1(2ν1 − 3ν2 + ν3)
,

where µn =
∑

k knpk is the nth moment of the distribution of numbers of
elements of part A in which elements of part B have appeared, and νn is the
same but in the other direction.

If we think in the movies and actors network, µn would be is the nth mo-
ment of the distribution of numbers of movies in which actors have appeared,
and νn the same for cast size (number of actors in a movie).

As we did with the uni-partite estimations, we have encapsulated the cal-
culations in a class. In the bipartite case, it expects two degree distributions
in the constructor, and it has two methods to estimate the clustering coeffi-
cient for each part of the network, namely CCg and CCh, without parameters
and returning a double.

96

5.10 Correlation

An interesting property of social networks is that typically highly connected
nodes tend to be connected with other high degree nodes, while just the
opposite happens with technological and biological networks. A way to mea-
sure this tendency is with the correlation, which gives us, for every degree d,
the mean degree of the nodes connected to nodes with degree d. Our library
implements this feature for degrees and strengths (for weighted networks).

5.11 Distributions

We are also interested in elemental statistics such distributions (degree,
strength or weight 2). We have encapsulated the distribution into a class
which has convenient methods to print the distribution, calculate the mean
and the standard deviation. His constructor expects an array with the dis-
tribution. This way we can reuse all this calculation for the 3 distributions
we are interested in.

5.12 Rewiring

The rewiring consist in a randomization of a graph. Our library supports the
Robins randomization [51], and the description of the algorithm is as follows:

For each observed graph, we simulate a distribution of bipartite graphs
randomly, conditional on a number of properties, to enable comparison.
These properties include the same number of companies and persons as the
observed data, as well as the constraints of the network infrastructure, that
is, that the degree of each director is at least two, and of each company at
least one. We also fix the number of edges in each graph of the simulation
to be equal to the number of edges in the observed network infrastructure.

We use a bootstrap approach by starting from the observed graph, which
automatically has the required constraints. We perform a large number of
initial iterations, removing a randomly selected edge and adding a new edge
between a previously untied director and company randomly selected, pro-
vided that the constraints are observed. With sufficient initial simulations,
the result is a graph that is random conditional on the infrastructure con-
straints and with the same number of edges as the observed graph. We take
this graph as the starting point for the second simulation run from which we

2Degree and strength refers to nodes and weight to edges.

97

collect data. 3

With our new starting graph, the second simulation run uses the same
iteration strategy as before. To be precise: at step t of the procedure we
have bipartite graph Xt. We select at random an a, b, p and q such that
Xap = 1 and Xbq = 0, and we define a new proposal graph X ′t as equal
to Xt except that Xap = 0 and Xbq = 1. X ′t and Xt obviously have the
same number of edges, so we then check whether the other constraints are
obeyed in X ′t; namely that the degree of a remains greater than 0 and that
the degree of p remains greater than 1. If these constraints are satisfied, the
next graph in the simulation Xt+1 is set as equal to the proposal graph X ′t;
but if the constraints are not satisfied, Xt + 1 is set as Xt (see Snijders and
van Duijn, 2002, for a related algorithm for switching edges under compli-
cated constraints). This process simulates a uniform distribution of random
graphs conditional on the constraints, which serves as a basis of compari-
son to determine whether the observed graph has properties consistent with
this distribution (see Pattison et al., 2000, for a more formal description of
this general approach of comparing a particular graph against various graph
distributions.)

From our second simulation run, we collect a sample of graphs and for
each we examine the various graph statistics.4 We thus have distributions of
several statistics against which to compare the statistics from the observed
graph. In particular, we follow the approach of Robins et al. (in press)
in assuming that an observed geodesic statistic is short if it is not extreme
compared to the geodesic distribution generated from the simulation; and
that an observed clustering coefficient is high if it is extreme compared to
the simulated distribution.

One important point about this simulation approach is that it avoids
problems relating to the size of the networks. Here we are trying to compare
two networks of different size, with different numbers of nodes and edges.
In these circumstances, direct comparisons of graph statistics and degree

3We chose the number of initial simulations so that each edge has a chance of being
selected (and thereby changed) at least 10 times. For instance, for the US data, (1249
observed edges) we used an initial run of 15,000. We have experimented with different
lengths of initial simulation runs. Initial runs of up to 1 million simulations did not produce
markedly different results.

4Typically, we examined every 1000th graph in a simulation run of 400,000, leading to
samples of 400. By examining plots of the various statistics against the number of the
iteration, we are confident that the process has burned-in to a stationary distribution.
Examining the numbers of edges and the degree distributions of directors and companies
across the sample confirms to us that the constraints are satisfied. We have also checked the
simulation to see that all nodes participate in edge changes. Accordingly, we are satisfied
that we are producing the desired conditional random bipartite graph distribution.

98

and geodesic distributions may be meaningless. But by making comparisons
first against appropriately sized reference distributions of graphs, and seeing
in what ways the observed data sets differ from such distributions, we are
able to draw conclusions comparing the two networks. This seems to us a
principled way of making comparisons when networks differ substantially in
size.

5.13 Unit Test

To finish this chapter we will explain the unit test, which is a procedure to
test the correctness of the library. It’s just an entry in the makefile which calls
the pipeline program with different commands and fixed input networks, and
compares the output to a previously saved output for the same command. If
the outputs differ the test fails. Usually, every time we add a new feature to
the library, we also add an entry to the unit test that tests this new feature.
Then, every time something is changed in the code, the unit test is executed
in order to be aware if the changes have messed up something.

99

Chapter 6

Visualization 1: Line Map

In this chapter we will present a layout we have created to display networks
where the nodes have fixed positions in the map, we have called it Line Map
Layout. It is useful to display flows of information, money, migration of
people or others between countries or regions. It is a very similar concept to
the flow map layout [46], but it’s implementation is much more simple. We
can see an example on figure 6.1.

As with in the flow map layout [46], this layout doesn’t support multiple
roots (sources of the flow), and this improvement has been left as a future
work.

It has been useful to us to show the relations between countries in the
global network of directors.

6.0.1 Implementation

The implementation has been made in the Java programming language, and
we have used a third party library for that language called prefuse [47],
which is a visualization toolkit that has a lot of features for data modeling,
visualization, and interaction.

The first thing we need is obviously the network we want to display. This
network is represented in an graphxml [48] file, which is a graph description
language in XML that can be used as an interchange format for graph drawing
and visualization packages. In this file there are specified all the nodes (the
countries in our case), with his positions in the map, and the (weighted)
edges between this nodes, that since we are only able to display flows with a
single source, the origin of all the edges must be always the same node.

The source of this information comes from the worldboards project, and
we are interested in showing the network of the countries of the world, where
the weight of an edge that goes between two countries is representing the

100

Figure 6.1: Line Map Layout

number of directors that are directing firms of both countries.
The information of the coordinates of each country has been gathered

from the wikipedia [50]. We have approximated the coordinates of each
country as the coordinates of the capital of it. Since this information was
available on the wikipedia in different pages with a fixed layout, and it would
have been tedious to gather the data manually, we have written an script that
fetches this information automatically.

Moreover, we want to display a map of the world as the background, and
we could simply use a bitmap to show it, but since we want to be able to
zoom in particular zones, this option may not be the optimum one, so we
have decided to use a shapefile 1 of the world map [49], and use the GeoTools
library [43] to handle it.

1A shapefile is a file that gives precise spatial information of the shape of the boundaries
of countries or regions

101

Chapter 7

Visualization 2: Venture
Capital

In this chapter, we present a technique to visualize datasets containing spatial
and temporal network flow information. We work with investment transac-
tions between venture capital firms and start-up companies in the US during
a 45-year period. The visualizations show investment sources and targets
geographically and over time. The visualization permits an intuitive analysis
of the geographic growth of the venture capital market and suggests that
contrary to static statistical analysis, local regions developed in response
to across regional investment flows. The evolutionary dynamics of the net-
works are hard to spot using traditional analytical techniques. We deepen
the network visualization layouts by highlighting both spatial and temporal
regions which show strong activity; we call this ’hot spots analysis’. We
then use a cartogram approach to overlap and correlate secondary economic
information which can be easily contrasted to the network-related phenom-
ena. With this approach our visualization is able to help domain researchers
answer questions regarding the relationship between network dynamics and
economic factors. With this mixed approach, we can use our visualization
tool to focus on particular features which are then analyzed using classic
methods.

7.1 Introduction

Our aim is to present a technique to visualize datasets containing spatial
and temporal network flow information. The dataset we have been work-
ing on contains information about investment transactions between venture
capital firms and start-up companies in the US during a 45-year period, but

102

the concepts here explained can be translated to any dataset containing this
spatial and temporal network flow information. We are particularly inter-
ested in highlighting the regions with strong activity, or hot-spots, in order
to detect them in a intuitive visual way to later focus on particular features
and analyze them with classical methods. Moreover, we are also interested
in overlapping secondary economic information such as income per capita in
order to help domain researchers answer questions regarding the relationship
between network dynamics and economic factors.

7.2 Visualization

The basic visualization shows the nodes participating on the network and the
flow of information that they exchange. In our case, the nodes participating
on the network are the venture capital firms and the start-up companies, and
the flow of information are the investment transactions. The nodes have a
fixed position in the layout, and it is the coordinates of the cbsa code 1 their
firm or company belongs to. Our first idea was to show the nodes of the
network as red and blue circles (depending of if they where a venture capital
firm or a start-up company, and having an intermediate color if they where
both) and the transactions as little white spots traveling from the source to
the destination over time, but after visualizing the animation, we realized
that those white spots where adding more noise than interesting information
for the questions we where trying to answer. Something very important in
any visualization tool is to maintain the ink/data ratio low [37].

Since we where interested in how many transactions did a node receive,
but not who where sending them, the white spots where indeed adding too
much information we didn’t need, and we decided to represent the number of
transactions received by the radix of the circle representing the node. This
approach makes the visualization much more clear in order to detect the hot-
spots. We call this animation the hotspot animation, and a sample frame can
be seen at figure 7.1.

1A Core Based Statistical Area is the official term for a functional region based around
an urban center of at least 10,000 people, based on standards published by the Office of
Management and Budget (OMB) in 2000. Areas defined on the basis of these standards
applied with Census 2000 data were announced by OMB in June 2003. These standards
are used to replace the definitions of metropolitan areas that were defined in 1990. [35]

103

Figure 7.1: Hotspots visualization

#date, cbsa1, cbsa2

1969-01-01 00:00:00.000,35380,47900

1969-01-01 00:00:00.000,31100,41940

1969-01-01 00:00:00.000,41860,41940

Figure 7.2: Transaction file

7.2.1 Implementation

To do this visualization, we have used the Java programming language [30],
with the Processing library [31] which is a library, programming language
and an environment to program images, animations and interactions.

The program reads a config file where, among other things, are specified
the file names of the dataset we want to visualize. There are two files, one
contains the transaction data (date, source cbsa code, destination cbsa code),
and the other the coordinates of the cbsa codes. The format of the file is a
CSV (comma separated file) [34]. An example fragment of this files is shown
in figures 7.2 and 7.3.

The files are loaded in memory, and then the process of generating the
animation begins. In our main class, there is a callback method named draw,
which is called by the framework, and is the responsible for drawing every

104

#cbsa, long, lat

45620,30.883208,-83.91237

28740,41.8718185,-74.10714

15580,45.946694,-112.6987

Figure 7.3: Cbsa coordinates file

frame (one at each call). Every frame represents a month. The generation
of every frame is incremental, that is, every frame depends on the previous
one. Before we start to paint, we pick the previous frame and apply a decay,
then we use the result as the background for the new frame. The decay is
simply to paint into the frame a rectangular block in transparent black, that
way, old data is still visible but less at a time until it disappears. Over this
background is painted the actual data, we look for the transaction database
for transactions done in the actual time, then for each transaction we look
at the coordinates of the source and destination of it, the coordinates are
translated into points in the screen, and two circles are painted into this
coordinates, a blue one for the source and a red one for the destination. If
there are more than one source or destination in the same coordinates, this is
represented with the radix of the circle, so before we begin to paint, we need
to store the circles in memory, and update his radix for every transaction,
then we paint this circles onto the screen. A sample frame of the result can
be seen at figure 7.1.

Since this process is a bit costly computationally (almost two hours in an
intel core duo 1.66Ghz), and it can’t be seen in real time, we need to generate
a precalculated video file in order to view the animation. At each step of the
animation, the pixels generated are sent to an object that generates a video
file using the quicktime [32] codec.

7.3 Secondary economic information

Moreover, we are interested in overlapping and correlating secondary eco-
nomic information which can be easily contrasted to the network-related
phenomena. With this approach our visualization is able to help domain
researchers answer questions regarding the relationship between network dy-
namics and economic factors. In our tests, we used the mean income per
capita of each region of the map, we call this kind of information energy, and
could be any one-dimensional information that distributes over time and
space. The method we have used to display this information, is informally

105

Figure 7.4: Snow falling

speaking, a bit like dropping snowballs into a two dimensional space; the
more balls I drop to the same place, the bigger the mountain that will be
formed there will be. Then, we translate heights of snow over the space into
intensity of color into the map. Our snowballs are in fact cons with height
proportional to the value they are representing (a bigger income per capita
will translate into a taller cone), and when they fall, they deform their-selfs
to adapt into the floor they fall, as it is shown in figure 7.4. Unlike the main
visualization, the generation of every frame of this one is independent of the
others, and they are generated sequentially to form an animation. Moreover,
the generation of the two visualizations (the main one with the nodes of the
network, and this one with the energy) are completely independent of each
other, and are later joined together by summing up each spectrum of the
color for each pixel and each frame. We have tried to do the composition
with standard methods such as the alpha channel porter, but they obscure
too much the visualization.

7.3.1 Implementation

In order to get this mixed animation, we needed to generate the second
animation and merge it with the first one. To do that, we need the two
animations to have the same number of frames, and the same dimensions.
Obviously, we could generate the second animation with this specifications,
but we have decided to solve the problem more generally. We have developed
a set of classes that help us in the video processing, and we will describe and
comment each one of them.

106

Figure 7.5: Snow visualization

Video class

This is the superclass of all of the following classes. It represents a video
or animation, i.e. a set of ordered frames, that are no other thing than
images. It has two abstract methods, getNumFrames which must return the
number of frames of the animation and getNextFrame, which must return an
Image object that represents a frame of the animation. getNextFrame must
be called at most getNumFrames times, and it has to successively return all
the frames of the animation.

Moreover, this class has three implemented methods, that every subclass
will also dispose of, which are:

• saveJpgs(String dir): save every frame as a jpg file in the specified
directory.

• savePngs(String dir): save every frame as a png file in the specified
directory.

• saveAvi(String filename): save the whole animation as a avi file, calling
one of the above methods and calling the mplayer [33] utility

• saveMov(String filename): save the whole animation as a quicktime
file, using directly the images in memory

107

VideoResize class

This class is a subclass of video. His constructor receives a Video object and
two integers to specify a dimension, and the frames returned by him are the
resized frames returned by the Video object used in his constructor.

getNumFrames simply returns the same value as his enclosed video.

VideoInterpolate class

This class works in a similar fashion as the VideoResize one. This time
we specify in the constructor the number of frames we want the new Video
to have. This class then adds new frames to the given object by doing an
interpolation of frames to accomplish to have the specified number of frames.

We must note that there are never all the frames in memory, in fact there
is only one at a time (or two).

VideoSum class

The purpose of this class is to do composition [38] of images or animations.
This class receives two video objects in the constructor. They have to have
the same dimensions and number of frames. And the video generated is
sum of the two. That is, every pixel of the animation is summed up, i.e.
the resulting color of summing two pixels is the result of the sum of each
spectrum of the color. As we can see, is possible to exceed the maximum
value 255 in the sum, in that case the value is left to 255.

This is a simple method of joining two images or animations, and gives
fairly good results.

VideoMerge class

The purpose of this class is the same as the previous one, but in this case a
parameter is specified indicating how much of every image must be picked.
We call to this parameter the alpha factor, and before doing the sum (as in
the previous class), we multiply the spectrum of the color of one image by
alpha, and the other image by 1−alpha. For instance, if we specify an alpha
factor of 0, the resulting image is exactly the same as the first one, while when
we specify an alpha factor of 1, the resulting image will be the same as the
second one, leaving intermediate values meaning intermediate compositions.
Moreover, different parameters can be specified for each spectrum of the
color, so, we can for instance say, mix the 80% of the red of image one, the
20% of image two, the 50% of the green of image one, the 50% of the green
of image two, and the 100% of the green of image one.

108

EnergyVideo class

This is the class that generates the videos which we call energy videos, that
are a method to visualize one-dimensional data that distributes over space
and time. A data structure is maintained that represents the frames, for
every frame we have a matrix of integers (of the same size as the frame), so
we have a sequence of matrices. That matrices represent the snow, and they
have a method called addCone which adds a cone of the specified radix and
height to the specified coordinates. The matrices are initialized at 0, and
when the method addCone is called the following code is executed.

109

for(int i=x-radix;i<=x+radix;i++)

{

for(int j=y-radix;j<=y+radix;j++)

{

if (i>=0&&i<width&&j>=0&&j<height)

{

int d = (int)Math.sqrt((i-x)*(i-x)+(j-y)*(j-y));

if (d < radix)

map[i][j] += max*(radix-d)/radix;

}

}

}

which updates the matrix in order to hold the new cone. This concept
can be visualized in figure 7.4.

Then, the frames for the animation are generated using this matrices.
Each matrix is transformed to a frame. In the process of generating the
matrices, the maximum and the minimum values of all the matrices are
tracked, we call this values max and min. When the EnergyVideo is created,
two colors are specified named colorMax and colorMin, then the value max
is mapped to color colorMax and min to colorMin, leaving the intermediate
values have intermediate colors. Usually we will select the color white as the
colorMax and the black as the colorMin, this way we will obtain a gray-scale
image.

PerCapitaVideo class

The EnergyVideo class is an abstract class, and we need to inherit from it
to have functionality. Here we present a concrete subclass of it that shows
specific data. In this case we show the mean income per capita for every
zone in the map of US. For zone, we understand his cbsa code. The data
has been obtained from the US Bureau of Economic Analysis (BEA) [42],
and it contains the mean income per capita from the years 1969 to 2004
for each cbsa. In order to be able to compare incomes per capita between
years, we need to counteract the inflation. We have also a table that shows
the variation of the inflation over time, and we use it in order to get an
absolute value of wealth on a region. With all this data, we simply need to
call conveniently the method addCone of our superclass to get the desired
animation. A frame of the result, composited with the hotspot animation,
can be seen at figure 7.5.

110

ProcessingVideo class

In order to do the mixing of the two animations, we needed to be able to
see an animation developed with the Processing Framework as a Video class.
This is the purpose of the ProcessingVideo class.

The way it works is by creating a new thread that executes the Processing
code, and then, through a Semaphore, using the consumer - producer model,
every time a new frame is requested, it waits until the producer (Processing
thread) finishes a frame, to later return it.

PngsVideo/JpegsVideo class

Since the last method was very slow, it not was very convenient while we
where doing just tests. The purpose of this class is to accelerate the process
by caching the images of the animation generated with Processing. This class
simply reads a directory, and gives as frames the image files found there. We
can call the method savePngs of the Processing animation (just once), and
then work with the images generated directly through this class, avoiding to
have to generate them from scratch at every test. Obviously, this method is
only useful if we are not modifying the Processing animation, but just using
it to merge with another one.

Putting it all together

As an example on how are this classes used, we will show the code we used
to generate the animation.

Video procVideo = new ProcessingVideo();

Video procVideoRes = new VideoResize(procVideo, width, height);

Video capitaVideo = new PerCapitaVideo(width, height,

new Color(0, 0, 0), new Color(255, 255, 255));

Video capitaVideoInt = new VideoInterpolate(capitaVideo,

procVideoRes.getNumFrames());

Video sumVideo = new VideoSum(procVideoRes, capitaVideoInt);

sumVideo.saveMov("out.mov");

In order to join correctly the two animations, the initial and final frames
of both of them must represent the same dates.

7.4 Secondary economic information, ver. 2

Alternatively, we have also implemented another animation that shows the
same data in a more accurate way. The problem with the above animation

111

is that all the snow balls are of the same size and shape, but this is an
approximation since the cbsa codes [35] represents zones of the US with
irregular shapes and different sizes. To solve this problem, we have used a
shapefile [39] for the cbsa zones that tells us the precise boundaries of the
regions so our new animation is more accurate than the previous one.

7.4.1 Implementation

PerCapitaVideoShapeFile class

The EnergyVideo class can be useful to visualize data over time an space,
when we don’t exactly know the shape of the zone we want to paint, or
we simply have two coordinates. But since we want to display information
about cbsa zones, and the shapes of them are known, we can visualize this
information more accurately by using shapefiles [39]. A shapefile can spatially
describe polygons, that can be an approximation to real boundary lines for
countries or regions. Since we didn’t find a good shapefile for cbsa codes, but
we did for zip codes (which are a similar concept but maintained by another
organization [40]), we have used this [41] mapping that maps cbsa codes to
zip codes. As the shapefiles are complex, we decided to use a third party
open library written in Java to work with them, called GeoTools [43]. A
sample frame of the result composited with the hotspot animation, can be
seen at figure 7.6.

112

Figure 7.6: Shapefile visualization

113

7.5 Conclusions

After watching the resulting animations, we have concluded the following:

• Visual feedback on closeness of Targets and Sources: In the animations
in which we can see the transactions represented as little white dots,
we can see if there is a tendency to invest in geographically close firms,
and indeed this tendency can be seen in the visualization. On the other
hand, there can be also seen a lot of transactions going from coast to
coast of the US map.

• Proportion of Source vs Target hotspots: In can also be clearly seen
in the visualization that there are more sources of transactions that
targets, and the sources are more dispersed while the targets are more
concentrated.

• Able to visualize large number of deals and their effect

• Easy to locate the investment on a map

• No clear difference in relation of economic wealth to hot spots

7.5.1 Future Work

We want to keep doing animations with different energy data. We are now
working with another dataset with information about patents which we want
to use to add as a secondary economic information in our visualization. The
idea is as follows: The patent dataset gives us information of which firms are
the owners of the existent patents, and for each patent we know which other
patents are cited and which other patents are citing it. The first thing we
need to do is to join the two databases (venture capital and patents) into one
by doing name matching of the firms. Then we can, by using for instance en
eigenvector centrality measure with the citations, calculate the importance
of each patent. Finally, we can do some measure of the creativity of each firm
by looking at the importance measures of the patents that owns, and this
information can be represented in the map as we did with the income per
capita. With such an animation we will be able to see if there is a tendency
to invest to more creative firms than to less ones.

114

Chapter 8

Planning, Development and
Costs

8.1 Definition of objectives

At the beginning of the project, a set of objectives where proposed, that
where mainly:

• Recollect all the data from the worldboards project in order to create
a clean dataset

• Create a tool to do the analysis of this or other datasets

• Create a tool to visualize this dataset

8.2 Background and feasibility

There already exist some tools designed to work with networks (analysis
and visualization) such as pajek or ucinet, and we have used them in some
concrete moments, but we needed to develop our own tools. The existent
programs doesn’t fill our requirements in many ways:

• Although some of them are free, they are closed source so we can’t
extend them. He have implemented a lot of things in our analysis tool
that this other tools lack, that alone is a sufficient reason to choose not
to use them.

• They can’t be automated. His only interface is the GUI, and we need
to do some complex calculations that would involve a lot of operations
in the GUI.

115

• His support for visualization is very basic. We haven’t found any prod-
uct for the dynamic visualization of geographical and economic data.

Even though we decided to code our tools we didn’t code them 100% from
scratch. Some code with basic funcionlity was thankfully contributed to us
by Josep M. Pujol. The code had all the graph data structure already coded
with some methods such as a loader from a pajek file. Although it had other
features we haven’t used them.

We have also used the graph boost C++ library to implement the be-
tweenness centrality as it is already coded there using the Brandes algorithm.

There are some external binaries and libraries that we have also included
in our library. They are algorithms for graph partitioning, concretely a li-
brary coded by Josep M. Pujol implementing the PDB algorithm, and an
external binary coded by Jordi Duch and Alex Arenas that implements the
Extremal Optimization algorithm.

The rest of the library has been coded by our-selfs from scratch.
As for the visualization tool, it was also coded from scratch using some

third party libraries.

8.3 Development

The specification of our tools was created in an iterative process. The nature
of itself (being a library) permitted to easily add features to it as needed.

The design of it has had always speed in mind. The size of the datasets
we are working with combined with the high cost of some of the algorithms
have made the speed of the design a priority. That’s the main reason for why
we have chosen C++ as the programming language. Of course we had other
design objectives such as

• Code portability (we needed the code to be executable in two platforms:
windows and linux)

• Code maturity (we think that the code has some degree of maturity as
it has been quite tested, and derives from another library which gives
some portions of code almost three years of testing)

• Code readability and documentation (the code has been read and writ-
ten for at least three persons)

Less important design objectives

116

• Easy to use (we are almost the unique users of the tool, so we don’t
need it to be easy to use as we already know well how to use it)

• Code reusability. (The tool we have developed has a very concrete
objective so solving problems in a more general approach doesn’t give
us any advantage)

8.4 Concordance of objectives and results

The objectives have been accomplished so far, but the project has not finished
yet. The part of the clean-up process and name matching of the database
has given as a result a dataset which we have analyzed with our library. The
part of the visualization has given some animations as a result, which where
presented in the sunbelt conference of 2007.

8.5 Economic analysis and alternatives

As we discussed before, there where no feasible alternatives to coding the
tools as they doesn’t exist in the market. Even so, the cost of the project
has been relatively low compared with a commercial development of similar
characteristics.

The duration of the project has been of ten months so far, working at
a rate of 6 hours a day. That gives a total of 1200 hours. Approximately
the following table will give an idea of the investment of this hours in each
different part of the project.

117

Concept amount
Training (reading papers and others) 10%
Writing the memory 20%
WorldBoard Database 20%
- Data import - 90%
- Data clean-up - 10%
Name matching algorithms 10%
- Design - 20%
- Implementation - 70%
- Testing - 10%
Implementation of new features in the pipeline 20%
- Design - 40%
- Implementation - 50%
- Testing - 10%
Implementation of the visualization tools 20%
- Design - 30%
- Implementation - 60%
- Testing - 10%

118

Bibliography

[1] Barabsi, A.-L., and R. Albert, Statistical mechanics of complex networks,
Reviews of Modern Physics, Vol 74, page 47-97, 2002.

[2] G. Navarro. A guided tour to approximate string matching. ACM Com-
puting Surveys (CSUR) archive 33(1), pp 31-88, 2001.

[3] G. Navarro, Ricardo Baeza-Yates, E. Sutinen and J. Tarhio. Indexing
Methods for Approximate String Matching.IEEE Data Engineering Bul-
letin 24(4):19-27, 2001.

[4] NIST’s Dictionary of Algorithms and Data Structures: Levenshtein Dis-
tance

[5] Peter N. Yianilos, Data Structures and Algorithms for Nearest Neighbor
Search in General Metric Spaces

[6] http://vlado.fmf.uni-lj.si/pub/networks/pajek/

[7] M. Girvan and M. E. J. Newman, Community structure in social and
biological networks.

[8] M. E. J. Newman and M. Girvan, Finding and evaluating community
structure in networks.

[9] M. E. J. Newman, Fast algorithm for detecting community structure in
networks.

[10] J. Duch, A. Arenas, Community detection in complex networks using
Extremal Optimization.

[11] Josep M. Pujol, Javier Bejar, and Jordi Delgado, Clustering Algorithm
for Determining Community Structure in Large Networks

[12] Josep M. Pujol, Dynamics of Social Structures in Multi-Agent Systems

119

[13] A. Barrat, M. Barthélemy, R. Pastor-Satorras, and A. Vespignani, Proc.
Natl. Acad. Sci. (USA) 101 3747 (2004).

[14] Matthieu Latapy, Clemence Magnien and Nathalie Del Vecchio, Basic
Notions for the Analysis of Large Affiliation Networks / Bipartite Graphs.

[15] Marc Barth elemy, Alain Barrat, Romualdo Pastor-Satorras, and
Alessandro Vespignani Characterization and Modeling of weighted net-
works.

[16] Ulrik Brandes, A Faster Algorithm for Betweenness Centrality

[17] http://www.boost.org/

[18] http://www.boost.org/libs/graph/doc/index.html

[19] Jeremy G. Siek, Lie-Quan Lee, Andrew Lumsdaine, Boost Graph Li-
brary, The: User Guide and Reference Manual

[20] http://en.wikipedia.org/wiki/Eigenvaluealgorithm

[21] S. Kirkpatrick and C. D. Gelatt and M. P. Vecchi, Optimization by
Simulated Annealing, Science, Vol 220, Number 4598, pages 671-680,
1983

[22] Roger Guimera, Luis A. Nunes Amaral, Functional cartography of com-
plex metabolic networks

[23] Freenan L C, 2003 In Breiger R, Carley C and Pattison P, editors, Dy-
namic Social Network Modeling and Analysis: Workshop Summary and
Papers Washington, DC: The National Academies Press), 3997

[24] Newman M E J, 2004 Eur. Phys. J. B 38 321

[25] Newman M E J, 2004 Phys. Rev. E 69 art. no. 066133

[26] Newman M E J, 2006 Proc. Natl. Acad. Sci. USA 103 8577.
doi:10.1073/pnas.0601602103

[27] Newman M E J, 2006 Phys. Rev. E 74 036104

[28] M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with
arbitrary degree distributions and their applications

[29] http://elsa.berkeley.edu/ bhhall/pat/namematch.html

120

[30] http://java.sun.com/

[31] http://processing.org/

[32] http://www.apple.com/quicktime/

[33] http://www.mplayerhq.hu/

[34] http://tools.ietf.org/html/rfc4180

[35] http://en.wikipedia.org/wiki/Core Based Statistical Area

[36] http://www.nber.org/patents/

[37] Edward Tufte.

[38] Thomas Porter, Tom Duff. Compositing Digital Images.

[39] http://en.wikipedia.org/wiki/Shapefile

[40] http://en.wikipedia.org/wiki/ZIP code

[41] http://www.census.gov/population/estimates/metro-city/List4.txt

[42] http://www.bea.gov/

[43] http://geotools.codehaus.org/

[44] H. S. Wilf, Generatingfunctionology, 2nd Edition, Academic Press, Lon-
don (1994).

[45] http://en.wikipedia.org/wiki/Newton’s method

[46] Doantam Phan, Ling Xiao, Ron Yeh, Pat Hanrahan, and Terry Wino-
grad, Flow Map Layout

[47] http://prefuse.org/

[48] http://db.cwi.nl/rapporten/abstract.php?abstractnr=613

[49] http://www.cipotato.org/DIVA/data/MoreData.htm

[50] http://www.wikipedia.org/

[51] Robins, Garry and Alexander, Malcom, Small Worlds Among In-
terlocking Directors: NetworkStructure and Distance in Bipartite
Graphs,Computational & Mathematical Organization Theory

121

